Neutrino oscillations in the galactic DM halo

Pablo Fernández de Salas

IFIC – CSIC / Universitat de València

24-11-2016 · Lumley Castle

In collaboration with R. Lineros and M. A. Tórtola arXiv:1601.05798 [Accepted in PRD]

MultiDark Multimessenger Approach for Dark Matter Detection

Neutrino oscillations and matter effects

Neutrinos oscillate in flavour

The presence of matter modifies oscillation patterns w.r.t. vacuum

 $\mathcal{H}_{tot} = \mathcal{H}_{vac} + \mathcal{V}$

Neutrino oscillations and dark matter effects

Neutrinos oscillate in flavour

Dark Matter might modify oscillation patterns as well

$$\mathcal{H}_{tot} = \mathcal{H}_{vac} + \mathcal{V}_{DM}$$

Considerations and assumptions

Dark Matter

→ Generic DM potential

$$\mathcal{V}_{\rm DM} = G_F N_{\chi} \underline{\lambda}$$

such that the effect is measurable on VHE-uonly

$$\mathcal{H}_{\rm vac} = \frac{1}{2E} U \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U$$

→ Candidate mass included in V_{DM}

DM profile

- Homogeneous DM profile
- → Non-homogeneous NFW profile

 $\mathcal{H}_{tot} = \mathcal{H}_{vac} + \mathcal{V}_{DM}$

Considerations and assumptions

Dark Matter

→ Generic DM potential

 $\mathcal{V}_{\rm DM} = G_F N_{\chi} \underline{\lambda}$

such that the effect is measurable on VHE-uonly

 → Candidate mass included in V_{DM}

DM profile

- Homogeneous DM profile
- Non-homogeneous NFW profile

Neutrinos

Averaged neutrino oscillations

$$f_{\beta} = \sum_{\alpha=e,\mu,\tau} \left(\sum_{i=1}^{3} |U_{\beta i} U_{\alpha i}^*|^2 f_{\alpha}^0 \right)$$

- Neutrino production at any point in the galaxy
- Monoenergetic neutrinos with
 E = 1 PeV
- Oscillation parameters fixed best fit in [D.V. Forero et al., PRD90-093006 (2014)]

What we can expect without New Physics (NP)

Best fit v mixing parameters

Including uncertainties in source flavor composition and ν mixing parameters

IceCube VHE neutrinos. Flavour composition

Latest results on flavor composition

Sensitivity after 10 years

Events in TeV – PeV range

[IceCube Collaboration – ICRC 2015 arXiv:1510.05223]

What we can expect with New Physics

NP does not affect mixing parameters

NP affects mixing parameters

Homogeneous DM profile

Flavour composition at Earth

Homogeneous DM distribution can mimic NP

Random potential entries |V_{ij}| < 10⁻¹³ eV

[C. A. Argüelles *et al*. -PRL **115**, 161303 (2015)]

NFW DM profile

DM distribution broadens neutrino flavour composition at Earth

Assuming:

- any production point
- random V_{DM}

- - VHE neutrinoIceCube data

Flavour composition at Earth

NFW DM profile

Intermediate (?) Conclusions

- VHE neutrino oscillations might be affected by the presence of DM in the Milky Way
- This could explain a non-standard VHE neutrino flavour composition observed at Earth
- The flavour composition at Earth could give information about the interaction of DM with neutrinos

 $E_{\nu} = 1 \,\mathrm{MeV}$

 $E_{\nu} = 1 \,\mathrm{PeV}$ R_e

$$V_{ij} = \lambda'_{ij} G'_F \frac{\rho_{\rm DM}}{m_{\rm DM}} \qquad G'_F = \frac{m_Z^2}{m_{Z'}^2} G_F \qquad R_\beta(V,E) = \frac{f_\beta^{\rm DM} - f_\beta^{\rm vac}}{f_\beta^{\rm vac}}$$
$$l_\nu = \left(\sigma_{\nu\chi} \frac{\rho_{\rm DM}}{m_{\rm DM}}\right)^{-1} = \left(\frac{\sigma_{\nu\chi}}{8.1 \times 10^{-22} {\rm cm}^2}\right)^{-1} \left(\frac{m_{\rm DM}}{{\rm GeV}}\right) {\rm kpc}$$

V_{11}^{\oplus} [eV]	10^{-21}	10^{-19}	10^{-17}		
Weak scale (a) assumptions: $G'_F = G_F$, $\lambda_{11} = 1$					
$m_{\rm DM} [{\rm eV}]$	10^{-8}	10^{-10}	10^{-12}		
$l_{ u} \; [m pc]$	10^{-2}	10^{-4}	10^{-6}		
Weak scale (b) assumptions: $G'_F = G_F$, $l_\nu = 50$ kpc					
λ_{11}	10^{-7}	10^{-9}	10^{-11}		
$m_{\rm DM} [{\rm eV}]$	10^{-15}	10^{-19}	10^{-23}		

V_{11}^{\oplus} [eV]	10^{-21}	10^{-19}	10^{-17}		
100 GeV DM (a) assumptions: $m_{\rm DM} = 100$ GeV, $l_{\nu} = 50$ kpc					
λ_{11}	10^{-7}	10^{-9}	10^{-11}		
$m_{Z'}$ [eV]	10^{-2}	10^{-4}	10^{-6}		
100 GeV DM (b) assumptions: $m_{\rm DM} = 100 \text{ GeV}, l_{\nu} = 10^6 \text{ Gpc}$					
λ_{11}	10^{-17}	10^{-19}	10^{-21}		
$m_{Z'}$ [eV]	10^{-7}	10^{-9}	10^{-11}		

 $\sigma_{\nu\chi} = 1.62 \times 10^{-23} (m_{\rm DM}/{\rm GeV}) \,{\rm cm}^2 \qquad \sigma_{\nu\chi} < 10^{-33} (m_{\rm DM}/{\rm GeV}) \,{\rm cm}^2$ $l_{\nu} = 50 \,\,{\rm kpc} \qquad l_{\nu} = 10^6 \,\,{\rm Gpc} \quad \begin{bmatrix} {\rm R. \ J. \ Wilkinson \ et \ al. \ -} \\ {\rm JCAP \ 1405, \ (2014) \ -} \\ {\rm arXiv: 1401.7597} \end{bmatrix}$

V_{11}^{\oplus} [eV]	10^{-21}	10^{-19}	10^{-17}		
1 keV DM (a) assumptions: $m_{\rm DM} = 1$ keV, $l_{\nu} = 50$ kpc					
λ_{11}	10^{-7}	10^{-9}	10^{-11}		
$m_{Z'}$ [eV]	10^{2}	1	10^{-2}		
1 keV DM (b) assumptions: $m_{\rm DM} = 1$ keV, $l_{\nu} = 10^6$ Gpc					
λ_{11}	10^{-17}	10^{-19}	10^{-21}		
$m_{Z'}$ [eV]	10^{-3}	10^{-5}	10^{-7}		

 $\sigma_{\nu\chi} = 1.62 \times 10^{-23} (m_{\rm DM}/{\rm GeV}) \,{\rm cm}^2 \qquad \sigma_{\nu\chi} < 10^{-33} (m_{\rm DM}/{\rm GeV}) \,{\rm cm}^2$ $l_{\nu} = 50 \,\,{\rm kpc} \qquad l_{\nu} = 10^6 \,\,{\rm Gpc} \quad \begin{bmatrix} {\rm R. \ J. \ Wilkinson \ et \ al. \ -} \\ {\rm JCAP \ 1405, \ (2014) \ -} \\ {\rm arXiv: 1401.7597} \end{bmatrix}$

Conclusions

- VHE neutrino oscillations might be affected by the presence of DM in the Milky Way
- This could explain a non-standard VHE neutrino flavour composition observed at Earth
- The flavour composition at Earth could give information about the interaction of DM with neutrinos

Adiabaticity

1 PeV neutrino crossing the GC

Spatial dependence (symmetric)

 $f_{\rho}^{\rm vac}$

What is next?

- For E > 60TeV 40% of the total neutrino flux has a galactic origin, but 60% is extragalactic
- Get bounds on Vij from IceCube and KM3NeT data
- Embed this effect in a specific **particle model**, rather than an interpretation