(Light) Dark Matter @LHC

Myeonghun Park (IBS-CTPU, PTC)

Dark Matter from aeV to ZeV

Two orthogonal EXPs

A strategy when we know NOTHING

Very minimal set-up (search channel) for DM @LHC

Name	Operator	Coefficient
D1	$ar{\chi}\chiar{q}q$	m_q/M_*^3
D2	$ar{\chi}\gamma^5\chiar{q}q$	im_q/M_*^3
D3	$ar{\chi}\chiar{q}\gamma^5 q$	im_q/M_*^3
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_*^3
D5	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$1/M_{*}^{2}$
D6	$ar{\chi}\gamma^{\mu}\gamma^{5}\chiar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu\gamma^5 q$	$1/M_{*}^{2}$
D8	$ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}\gamma^5q$	$1/M_{*}^{2}$
D9	$ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$
D10	$ar{\chi}\sigma_{\mu u}\gamma^5\chiar{q}\sigma_{lphaeta}q$	i/M_*^2
D11	$ar{\chi}\chi G_{\mu u}G^{\mu u}$	$lpha_s/4M_*^3$
D12	$ar{\chi}\gamma^5\chi G_{\mu u}G^{\mu u}$	$ilpha_s/4M_*^3$
D13	$ar{\chi} \chi G_{\mu u} ilde{G}^{\mu u}$	$ilpha_s/4M_*^3$
D14	$ar{\chi}\gamma^5\chi G_{\mu u} ilde{G}^{\mu u}$	$lpha_s/4M_*^3$

Name	Operator	Coefficient
C1	$\chi^{\dagger}\chi\bar{a}q$	m_a/M_{\odot}^2
C2	$\chi^{\dagger} \chi \bar{a} \chi^{5} a$	im_{-}/M^2
C3	$\chi^{\dagger} \partial \chi \bar{a} \chi^{\mu} a$	$1/M^2$
	$\chi^{+} O_{\mu} \chi q \gamma^{-} q$	$1/M_{*}$
04	$\chi^{\dagger} O_{\mu} \chi q \gamma^{\prime} \gamma^{\prime} q$	$1/M_*$
Co	$\chi'\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4W_*$
Co	$\chi^{}\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^2$
R1	$\chi^2 ar q q$	$m_q/2M_*^2$
R2	$\chi^2 ar q \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu u} G^{\mu u}$	$lpha_s/8M_*^2$
R4	$\chi^2 G_{\mu u} ilde{G}^{\mu u}$	$ilpha_s/8M_*^2$

Tim Tait. et.al. Phys.Rev. D82 (2010) 116010

Difference between DD and LHC

Busoni et.al. arxiv:1402.1275

Interplay between DD and LHC

- Different experiments can cover different DM mass scale!
- We can improve (go beyound) simple Mono-jet+MET

Tagging a

Tagging ISR jets + MET

- signals from SUSY decay become soft
- PT of ISR gets harder with the mass scale of SUSY
- Major BKG will be Z(to neutrinos)+jets
- Possibility to discriminate
 ISR jet (initially gluon) v. s. quark jets (in Z+jets)

g-initiated jet is "wider" compared to q-initiated jet

Utilizing the "signal" ISR jet tagging can improve the search sensitivity

Additional object for a Light DM

- A very light DM with a mediator around 2 M(dark) can enhance the DM annihilation process via a resonance-enhancement
- We can capture the light mediator @ LHC

Next-to-Minimal SUSY

A light DM in NMSSM

Resolving mu-problem through the "Yukawa" interaction with S $W_{\rm NMSSM} = MSSM$ Yukawa terms $+ \lambda \widehat{S} \widehat{H}_u \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$ can lead interesting phenomena for DM $\mu_{\text{eff}} \equiv \lambda s \ll \min[M_1, M_2]$ MSSM + S $\mathcal{M}_{\widetilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -m_W \tan \theta_W \cos \beta & m_W \tan \theta_W \sin \beta & 0\\ 0 & M_2 & m_W \cos \beta & -m_W \sin \beta & 0\\ -m_W \tan \theta_W \cos \beta & m_W \cos \beta & 0 & -\mu_{\text{eff}} & -\lambda v_u\\ m_W \tan \theta_W \sin \beta & -m_W \sin \beta & -\mu_{\text{eff}} & 0 & -\lambda v_d\\ 0 & 0 & -\lambda v_u & -\lambda v_d & 2\kappa s \end{pmatrix}$

 $[\mathcal{M}_{\tilde{\chi}_0}]_{55} = 2\kappa s = rac{2 \kappa \mu_{\mathrm{eff}}}{\lambda}$:a DM is singlino-dominated for $2\kappa/\lambda < 1$

A light DM in NMSSM with a light scalar

• From the soft-SUSY breaking term

$$V_{\text{soft}} = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + \left(\lambda A_\lambda S H_u H_d + \frac{1}{3} \kappa A_\kappa S^3 + \text{h.c.}\right)$$

the mass of singlet-like pseudo scalar

$$m_{A_1}^2 \simeq \lambda (A_\lambda + 4\kappa s) \frac{v^2 \sin 2\beta}{2s} - 3\kappa s A_\kappa$$

Singlino-dominated LSP (DM) [Small κ]

can be naturally accompanied by a light pseudo scalar

DM relic via a resonance A₁ channel

• Small μ_{eff} makes the 2nd and 3rd Neutralino -> higgino-like

The chance of the LHC

• Conventional search (three leptons) v.s. Muon-jet

 $-\nu_l$

p		$\tilde{\chi}^{0}_{2/3}$ $\tilde{\chi}^{\pm}_{1}$	χ_1^0 $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$
	BP1	BP2	
Masses			
$m_{\widetilde{\chi}_1^0} \; (\text{GeV})$	1.0025	1.4081	
$m_{\widetilde{\chi}^0_2} ~({ m GeV})$	189.09	170.13	
$m_{\widetilde{\chi}^0_3}$ (GeV)	-201.67	-182.27	
$m_{\widetilde{\chi}_1^{\pm}}$ (GeV)	194.97	167.72	
$m_{A_1} (\text{GeV})$	2.1776	2.9856	F
$m_{H_2} \; ({\rm GeV})$	124.12	125.79	
Branching Ratios			
$BR(\widetilde{\chi}^0_2 \to Z\widetilde{\chi}^0_1)$	0.634	0.603	
$BR(\widetilde{\chi}_2^0 \to A_1 \widetilde{\chi}_1^0)$	0.004	0.089	
$BR(\widetilde{\chi}^0_3 \to Z\widetilde{\chi}^0_1)$	0.736	0.704	M
$BR(\widetilde{\chi}^0_3 \to A_1 \widetilde{\chi}^0_1)$	0.004	0.081	
$BR(A_1 \to \mu^+ \mu^-)$	0.039	0.087	

14TeV LHC for $\mathcal{L} = 300 \text{fb}^{-1}$

Point	S/B in analysis		$\mathcal{Z}(\sigma)$ in analysis	
	3ℓ (SRZc region)	$\mu_{ m col}$	3ℓ (SRZc region)	$\mu_{ m col}$
BP1	0.591	0.42	2.7	1.2
BP2	0.436	15	2.0	27

MP et.al. arXiv:1504.0585

Light DM with a light dark photon

• A light dark matter, accompanied by a dark gauge boson.

$$\mathcal{L}_{\text{dark}} \equiv \bar{\chi}(i\partial \!\!\!/ - m_{\chi} + ig_{A'}A')\chi - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - \frac{1}{2}m_{A'}^2A'_{\mu}A'^{\nu} - \frac{\epsilon}{2}F'_{\mu\nu}F^{\mu\nu}$$

 The highly boosted "dark charged" DM will shower dark photons

The origin of the mass of a DM and a dark photon

Nicole F. Bell et.al. arXiv:1610.03063

One may ask the phenomenology according to the mass mechanism behind them.

Scenario	v mass	Z' mass	Required $\chi - Z'$	Annihilation	Z'
Section 10		2 111055	coupling type	processes	pol
Ι	Bare mass term	Stueckelberg mechanism	Vector	$\chi \longrightarrow Z'$ $\overline{\chi} \longrightarrow Z'$	Z_T'
Π	Yukawa coupling to Dark Higgs	Dark Higgs mechanism	Vector & axial-vector or pure axial-vector. The $U(1)$ charge assignments of χ_L and χ_R determine the relative size of the V and A couplings. The axial-vector coupling must be non-zero.	$\begin{array}{c} \chi \\ \overline{\chi} \\ \overline{\chi} \\ \chi \end{array} \xrightarrow{g'} \\ \chi \\ \overline{\chi} \\ \chi \end{array} \xrightarrow{g'} \\ \chi \\ \overline{\chi} \\ \overline$	Z_T' & Z_L'
III	Yukawa coupling to Dark Higgs	Stueckelberg mechanism	Vector	$\chi \longrightarrow Z'$ $\overline{\chi} \longrightarrow Z'$ $\overline{\chi} \longrightarrow Z'$ $\overline{\chi} \longrightarrow Z'$ $\overline{\chi} \longrightarrow S$	Z_T'
IV	Bare mass term	Dark Higgs mechanism	Vector	$x \longrightarrow Z'$ $\overline{x} \longrightarrow Z'$ $\chi \longrightarrow Z'$ $\chi \longrightarrow Z'$	Z_T'

Different showering @LHC

The very minimal set-up to focus on the dark showering;

Differentiate algorithm @ LHC

• How one can distinguish two mechanism with muon-jet

- The collider experiments (including LHC) is the orthogonal tool in hunting DM.
- Especially, the collider can probe the light DM and check the properties of light DM.