

cherenkov telescope array

The Cherenkov Telescope Array

Prospects for Dark Matter Studies

Paula Chadwick, Durham University

Outline

- What is CTA?
 - Basics of the imaging atmospheric Cherenkov technique
 - CTA: How? Where? When?
 - CTA's capabilities & science themes
- Prospects for DM studies
 - The Galactic centre
 - The Large Magellanic Cloud
 - Dwarf spheroidal galaxies

 γ -ray enters the atmosphere

Electromagnetic cascade

10 nanosecond snapshot

0.1 km² "light pool", a few photons per m².

Primary Y

C

e+

Richard White

Removing the Background

Present Instruments

The current telescopes have opened this new window on the Universe. Now we need to take the next step.

This would be great!

DM from aeV to ZeV

Science-optimization under budget constraints: Konrad Bernlöhr
Low-energy γ high γ-ray rate, low light yield
→ require small ground area, large mirror area
High-energy γ low γ-rate, high light yield
→ require large ground area, small mirror area

few large telescopes for lowest energies, for 20 GeV to 1 TeV ~km² array of medium-sized telescopes for the 100 GeV to 10 TeV domain

4 LSTs

large array of small telescopes, sensitive about few TeV 7 km² at 100 TeV

~25 MSTs plus ~28 SCTs extension ~70 SSTs

11/24/2016

DM from aeV to ZeV

 E^2 x Flux Sensitivity (erg cm⁻² s⁻¹) -01 r_{1} -01 r_{1} -01

10⁻¹³

 10^{-2}

Performance

- Improved sensitivity
 - Access the entire Galaxy
 - Instantaneous sensitivity (AGN, GRBs)
- Excellent energy 'reach'
- Field-of-view > 8°
 - Efficient survey instrument
 - Measure diffuse emission
- Arcminute angular resolution
 - Resolve extended sources

The Consortium (or at least some of it)

1350 scientists & engineers, 209 institutes, 32 countries....1 aim!

DM from aeV to ZeV

Timeline

Science Themes

- Theme 1: Cosmic Particle Acceleration
 - How and where are particles accelerated?
 - How do they propagate?
 - What is their impact on the environment?
- Theme 2: Probing Extreme Environments
 - Processes close to neutron stars and black holes?
 - Processes in relativistic jets, winds and explosions?
 - Exploring cosmic voids
- Theme 3: Physics Frontiers beyond the SM
 - What is the nature of dark matter? How is it distributed?
 - Is the speed of light constant for high energy photons?
 - Do axion-like particles exist?

Indirect Detection of DM via γ-rays

DM Search Targets

DM from aeV to ZeV

To look at it another way...

Galactic Centre observations

Deep and uniform exposure over several degrees around the central BH to allow for spectral & morphological studies, understanding of instrument systematics and of the astrophysical sources. A legacy dataset.

DM from aeV to ZeV

Galactic halo sensitivity

CTA Science TDR

See Carr et al. (CTA Consortium) arXiv:1508.06128 for details on this and following sensitivity curves

18

The Large Magellanic Cloud

- Milky Way satellite galaxy, about 1% of MW mass
- Expected DM density larger than any dwarf
- J-factor quite well-determined (min. of 5 x 10¹⁹ GeV² cm⁻⁵)
- DM signal morphology not strongly correlated with known astrophysical background

BUT

- Extended source
- 6x further away than the GC

11/24/2016

Dwarf spheroidal galaxies

- Gravitationally-bound objects, thought to contain ~10³ times more DM than visible matter
- Low astrophysical background
- Near point sources in CTA
- DM distribution not wellknown
- Much debate about which constitute the best targets

Fornax dwarf spheroidal galaxy, ESO/Digital Sky Survey 2

Classical dwarf spheroidal galaxies

11/24/2016

An example dSph: Sculptor

CTA Science TDR

Growing number of known dSphs

Comparing with Fermi & HESS

Most recent HESS result – 254h of observations: arXiv 1607.08142

Complementarity with other searches

Cahill-Rowley et al. arXiv: 1305.6921

CTA and Dark Matter

- Good prospects to probe WIMP models with thermal relic cross-section and mass above 200 GeV
- Combined with Fermi, CTA will be able to detect (or exclude) thermal WIMPs from a few GeV to a few 10s of TeV
- CTA sensitivity to heavy WIMPS (>TeV) is unique
- Excellent complementarity with direct DM searches and LHC
- A thorough understanding of the instrument and control of systematics is critical
- Better understanding of J-factors is essential
- We also need to understand the astrophysical background, particularly for the GC observations

With thanks to all my colleagues in CTA from whom I stole slides, graphs etc.