Gamma rays from the Galactic centre: an overview

Francesca Calore

IBS-IPPP Multidark Workshop Lumley Castle, 24/11/2016

ħ

Laboratoire d'Annecy-le-Vieux de Physique Théorique

~0.01 MeV

Francesca Calore

~TeV

LAPTh, Annecy-le-Vieux

The Fermi-LAT gamma-ray sky

-14

Astrophysical components

Astrophysical components

Astrophysical components

Targets for dark matter searches

M. Fornasa, M. Sanchez-Conde talks

Galactic Center

DM

- high statistics
- brightest dark matter source but uncertain distribution
- large background

Dwarf Spheroidal Galaxies

- dark matter dominated nearby objects
- almost background-free

Galactic Halo at High Latitude

- good statistics
- (extra)galactic backgrounds
- spectral and anisotropy measurements

Galaxy Clusters

- dark matter substructures
- cosmic-ray induced background

Dark Halos

- pure dark matter objects
- unassociated gamma-ray sources

+ dedicated searches for gamma-ray lines

The Galactic centre GeV excess (in the inner Galaxy)

Hooper&Goodenough '09; Vitale&Morselli '09; Hooper&Linden PRD'11; Hooper&Goodenough PLB'11; Boyarsky+ PLB'11; Abazajian&Kaplinghat PRD'12; Macias&Gordon PRD'14; Abazajian+ PRD'14; Daylan+'14; Huang+'15; Carlson+'15; Ajello+15; Casandjian Fermi Symp.'14; de Boer+'16; etc.

The Galactic centre GeV excess (in the inner Galaxy)

-3.84

Calore+ JCAP'15

3.84

Hooper&Goodenough '09; Vitale&Morselli '09; Hooper&Linden PRD'11; Hooper&Goodenough PLB'11; Boyarsky+ PLB'11; Abazajian&Kaplinghat PRD'12; Macias&Gordon PRD'14; Abazajian+ PRD'14; Daylan+ '14; Huang+ '15; Carlson+ '15; Ajello+15; Casandjian Fermi Symp.'14; de Boer+'16; etc.

Hooper&Slatyer PDU'13; Huang+ JCAP'13; Zhou+ PRD'15; Daylan+ '14; Calore+ JCAP'15; Gaggero+ 2015; Ajello+ 2015; Huang+ '15 Linden+'16; Horiuchi+'16; etc.

1.Uniform spectrum peaked at ~2 GeV

2.Extended at least up to 10 degrees

LAPTh, Annecy-le-Vieux

Possible interpretations

Unresolved sources

- ✓ Spectrum compatible with Fermi-LAT observed millisecond pulsars (MSPs), and marginally young pulsars.
- ✓ Plausible population of young pulsars in the CMZ and/or bulge MSPs from tidally disrupted globular clusters.

O'Leary+ '15; Brandt&Kocsis'15

- Strong support for population of discrete faint sources from wavelet decomposition and non-poissonian noise.
 Bartels+PRL'16; Lee+PRL'16
- ✓ Future dedicated radio observations can allow us to discover the bulge point source population.

Calore+ApJ'16

Truly diffuse processes

 ✓ Steady-state star formation at the Galactic centre and continuous injection of cosmic rays.

Gaggero+ JCAP'15; Carlson+'15

 ✓ Past activity of the central black hole and series of leptonic outbursts some fine tuning required.

Petrovic+ JCAP'14; Cholis+JCAP'15

LAPTh, Annecy-le-Vieux

✓ Annihilation of DM particles in the halo of the Milky Way. > 0(100) papers

11

Dark matter annihilation

Spectrum

$$\frac{dN}{dE} = \sum_{f} \frac{\langle \sigma v \rangle_{f}}{8\pi \, m_{\chi}^{2}} \frac{dN_{\gamma}^{f}}{dE} \int_{\text{l.o.s}} ds \, \rho^{2}(r(s,\psi))$$

Morphology

For EAGLE simulation: typically **shallower profiles** for Milky Way analogues, under conservative assumptions on resolution. N. Bozorgnia's talk

+ non-sphericity of the high-E excess? Linden+'16

+ disk component? Huang+JCAP'16, de Boer+'16

Diffuse emission and residuals

- None of the diffuse emission models gives reasonable fit to the data.
- Models excluded by many sigmas when performing goodness of fit.
- There are other excesses along the disk that are not understood, but that can be explained by background modelling uncertainties!

Diffuse emission and residuals

- None of the diffuse emission models gives reasonable fit to the data.
- Models excluded by many sigmas when performing goodness of fit.
- There are other excesses along the disk that are not understood, but that can be explained by background modelling uncertainties!

How can we trust the characterisation of large scale residual emissions?

First, we need to achieve good fits

Among the tested models, even the best-fit one leaves large residuals.

Bracketing uncertainties with models that are largely excluded leads to **biased results**.

First, we need to achieve good fits

Among the tested models, even the best-fit one leaves large residuals.

Bracketing uncertainties with models that are largely excluded leads to **biased results**.

How to progress?

- Better theoretical predictions, e.g. 3D ISRF, gas maps, etc.
- A way to fit the data taking into account uncertainties on those predictions.
- Those uncertainties are there, we need to parameterise them!
- We need to increase the number of free parameters!

General: Fit to gamma-ray data

 $Model = \sum_{k} Spectrum \times Morphology$

General: Fit to gamma-ray data

General: Fit to gamma-ray data

A new approach

 $Model = \sum_{k} Spectrum \times Morphology$ Spectra parameterisation from physical models is uncertain Pixel-by-pixel var To account for the number of addition the physical models is number of additio

 $\mu_{ij} = \sum \mathsf{T}_{i}^{(k)} \mathsf{S}_{j}^{(k)} \theta_{i}^{(k)} \theta_{j}^{(k)} \theta_{j}^{(k)}$

Pixel-by-pixel variations. To account for them a large number of **additional free parameters** is required!

Likelihood fit O(10⁵) free parameters

Adaptive template fitting: SkyFACT (Sky Factorisation with adaptive constraining templates)

Collaboration with Emma Storm and Christoph Weniger (GRAPPA, University of Amsterdam)

Francesca Calore

Unveiling the Bulge emission DATA

- Pass8 ULTRACLEAN
- ca. 8 yr data
- 180x40 deg²
- 0.3 200 GeV
- 0.5 deg resolution

MODEL COMPONENTS

Francesca Calore

Bulge emission components

The 511 keV line emission

FIG. 4 511 keV line map derived from 5 years of INTE-GRAL/SPI data (from Weidenspointner *et al.*, 2008a).

Purcell+'93,'97; Knödlseder+'03,'05; Siegert+16

FIG. 5 Fit of the spectrum of the annihilation emission measured by SPI with narrow and broad Gaussian lines and an ortho-positronium continuum. The power-law account for the Galactic diffuse continuum emission (Jean *et al.*, 2006).

Intensity: Total Galactic line intensity ~ 2.8 x 10⁻³ ph/cm²/sSiegert+16Morphology: 2D Gaussians for disk, bulge (N and B), GC source. **B/D ~ 0.6**Spectroscopy: Line-to-continuum ratio constrains the medium.Interpretation: radioactive decay of unstable nuclei, micro quasars, darkmatter, etc.e.g. Martin+'12; Guessoum='06; Boehm+'04; etc

A correlation with the 511 keV line?

Bartels, Storm, Weniger & Calore, In preparation

LAPTh, Annecy-le-Vieux

Gamma-ray bulge emission template

A correlation with the 511 keV line

 F_{GeV} [GeV/cm²/s/sr] = 1.24 x 10⁻⁰³ F_{511} [ph/cm²/s/sr]

Challenges and open questions

- The 511 keV line is seen in the disk as well. Is there a GeV excess emission along the disk? Is this consistent with the 511 keV line B/D ratio?
- What is the spatial extent of the correlation and what is the common radial profile?
- How likely is that a random dark matter profile would just look like that?
- What are possible astrophysical scenarios that can lead to a correlated emission?
- What is the effect of the bubbles, if any?

Correlation does not imply causation. It is nevertheless suggestive of a common origin of the two anomalies and quantifies it for the very first time.

Backup slides

The Fermi-LAT Collaboration analysis

- 15° x 15° ROI; tuning of GDE outside
 → specialised interstellar emission models.
- Wavelet transform for source identification (1FIG catalog).
- ✓ IC emission in inner 1 kpc enhanced w.r.to baseline prediction (20% of the total GDE emission).
- Positive residuals are left and can be partially absorbed by an additional centrally peaked spatial template.
- ✓ Not all positive residuals are accounted for by such a model.

An alternative method: the D³PO algorithm

- GDE phenomenologically constructed 2component model: bubble-like & cloudlike (90% emission).
- Faint point-sources accounted for.

Selig+ A&A'14

Pixel-wise maximum likelihood decomposition

Huang+'15

- ✓ Uniform and extended spectrum.
- ✓ Compatible with previous results.

✓ Spherically symmetric about the Galactic centre.

 $heta_{i,k}$

ith pixel

... but also the disk prefers a DM-like spectral component!

pMSSM solutions to the GeV excess

 $\ln \mathcal{L}_{\text{Joint}} = \ln \mathcal{L}_{\text{GCE}} + \ln \mathcal{L}_{\text{EW}} + \ln \mathcal{L}_{\text{B}(\text{D})} + \ln \mathcal{L}_{\Omega_{\gamma}h^2}$

Solutions:

- 1) 80-100 GeV, 95% WW, bino (90%) higgsino/wino (10%) or higgsino dominant (Planck)
- 2) 180-200 GeV, 87% tt, bino (90%) higgsino (10%), through heavy stops (1 TeV)

Most sensitive searches for LHC run II: (1) light squarks (< 2 TeV 70% points) and smuons (< 400 GeV 60% points); (2) heavy Higgs decay searches; (3) chargino/neutralino (compressed)

Bertone+ JCAP'16

The model

The likelihood $\ln \mathcal{L} = \ln \mathcal{L}_{d} + \ln \mathcal{L}_{c} + \ln \mathcal{L}_{s}$

Poisson likelihood

$$-2\ln \mathcal{L}_{d} = 2\sum_{i=1}^{n_{\text{pix}}} \sum_{j=1}^{n_{\text{bins}}} \left(\mu_{ij} - c_{ij} + c_{ij} \ln \frac{c_{ij}}{\mu_{ij}} \right)$$

Scale (close to one)
$$\ \sigma_j^k, au_i^k,
u^k \sim 1$$

$$-2\ln\mathcal{L}_c = \sum_{k=1}^{n_{\rm comp}} \left(\sum_{j=1}^{n_{\rm bins}} \left(\frac{\ln\sigma_j^k}{\Delta\sigma^k}\right)^2 + \sum_{i=1}^{n_{\rm pix}} \left(\frac{\ln\tau_i^k}{\Delta\tau^k}\right)^2 + \left(\frac{\ln\nu^k}{\Delta^k}\right)^2\right)$$

Smoothness

$$-2\ln\mathcal{L}_s = \sum_{k=1}^{n_{\rm comp}} \left(\sum_{j=1}^{n_{\rm bins}-1} \left(\frac{\ln\sigma_j^k - \ln\sigma_{j+1}^k}{\Xi_{\sigma}^k}\right)^2 + \sum_{(i,i')_{nn}} \left(\frac{\ln\tau_i^k - \ln\tau_{i'}^k}{\Xi_{\tau}^k}\right)^2\right)$$

No overfitting: $N_{data} = N_{pixels} \times N_{en} \times N_{comp}$ $N_{params} = N_{comp} \times (N_{pixels} + N_{en})$

Towards Poissonian residuals

Standard template fitting:

Adaptive template fitting:

Rescaling parameters

 $\mu_{ij} = \sum T_i^{(k)} S_j^{(k)} \theta_j^{(k)} \theta_i^{\prime(k)} \theta_i^{(k)}$

What is the physical meaning of the rescaling parameters?

- Uncertainties in gas tracers, CR density, etc. (NO overfitting!)
- Large-scale additional components: Fermi bubbles and bulge emission.