How can we get cosmic-rays from dark matter?

D. Kim & **JCP** [arXiv:1507.07922] & [arXiv:1508.06640], K. Boddy, K. Dienes, D. Kim, J. Kumar, **JCP** & B. Thomas [arXiv:1606.07440] & [arXiv:1609.09104]

Jong-Chul Park CNU 중남대학교

DM from aeV to ZeV: IBS-MultiDark-IPPP Workshop November 24 (2016)

Standard Model (SM)

Standard Model (SM)

SM is not the end of the story

On top of theory motivation, there are real & hopefully-real motivations for new physics.

Neutrino

- On top of theory motivation, there are real & hopefully-real motivations for new physics.
 - **Neutrino, Dark Matter**

Neutrino, Dark Matter, Collider

Neutrino, Dark Matter, Collider, Cosmic-Ray

Neutrino, Dark Matter, Collider, Cosmic-Ray, Cosmology, ...

Neutrino, Dark Matter, Collider, Cosmic-Ray, Cosmology, ...

Dark Matter (DM)

- **♦ DM**: ~25% of our Universe
- * **Compelling paradigm**: massive, non-luminous & stable particles

* Evidence

- ✓ Galaxy rotation curve
- ✓ Bullet cluster
- ✓ Gravitational lensing
- ✓ Structure formation
- ✓ CMB
- ✓ Coma Cluster
- ✓ Sky surveys

✓ **...**

DM Search Strategies

Indirect Detection: Cosmic-Rays

Cosmic-Ray Experiments

- & Ground-based MAGIC, HESS, CTA, IceCube, Super-K, Hyper-K, ...
- Balloon-based: ATIC, PPB-BETS, ...
- Satellite-based:

AMS, Chandra, Fermi-LAT, PAMELA, XMM-Newton, Hitomi, ASTROGAM, ...

- ✓ **Great sensitivity** to cosmic-ray signals
- Better chance to have the information for extracting DM properties

Hints from Cosmic-Rays?

- ★ Anomalies in cosmic-ray measurements ⇔ DM signature ?
 - > SPI/INTEGRAL (γ → e⁺): 511 keV line
 - > PAMELA (e^{\pm} , p^{\pm} , ...): e^{+} excess
 - > ATIC (e⁻e⁺): e⁻e⁺ excess
 - > Fermi-LAT (e⁻e⁺, γ): e⁻e⁺ excess, 130 GeV line, GeV excess
 - ➤ AMS-02 (e[±], p[±], ...): e⁺ excess
 - > XMM-Newton (X-ray): 3.5 keV line
 - > IceCube (v): PeV events

▶ ...

Today's Talks Francesca Calore, Juan de Dios Zornoza, Roberto Lineros, Paula Chadwick, Also Morselli, Marco Taoso, Manuel Masip, Miguel Angel Sanchez Conde

Conventional Approaches

Line-like Excesses

♦ 3.5 keV line, 511 keV line, 130 GeV line, ...

* <u>Typical DM interpretation</u>

✓ DM: directly annihilates/decays into

2 (stable) SM particles, γ +X

- ✓ The location of the line is identified as the (double) mass of DM
- ✓ Width of the line is instrumental

Bump-Like Excesses

♦ GC GeV γ-ray excess, e⁺ excess, …

* <u>Typical DM interpretation</u>

- DM: directly annihilates/decays into
 2 (unstable) SM particles which further
 goes to stable SM particles through
 secondary processes
- ✓ Diffusion mechanism for charged particles
- Shape information (including the peak position): highly model-dependent

- ***** Scenario with a single DM species
 - ✓ Simplest & well-motivated scenario
 - $\checkmark\,$ Stability of DM ensured (typically) by a discrete symmetry
 - ✓ **Popular models** having a single type of DM candidate:
 - SUSY models with R-parity
 - Extra-D models with KK-parity
 - Little Higgs models with T-parity

- ***** Scenario with multiple DM species
 - ✓ Nothing stops from having more stable particles
 - Visible sector (SM) has many stable particles
 - Rising interest in non-minimal scenarios

- ***** Scenario with multiple DM species
 - ✓ Nothing stops from having more stable particles
 - Visible sector (SM) has many stable particles
 - Rising interest in non-minimal scenarios

- ***** Scenario with multiple DM species
 - ✓ Nothing stops from having more stable particles
 - Visible sector (SM) has many stable particles
 - Rising interest in non-minimal scenarios

Scenario with multiple DM species: Dynamical DM framework

✓ DDM framework: the dark sector comprises a potentially vast ensemble of individual particle species χ_n whose cosmological abundances Ω_n are balanced against their decay width Γ_n in such a way as to ensure consistency with observational data.

K. Dienes & B. Thomas (2011)

✓ Mass parameters (generic parameterization)

$$m_n = m_0 + n^{\delta} \Delta m$$

δ:mass scaling parameter, Δm : mass splitting/gap

✓ Parameterizing the fluxes Φ_n by a single power law with a scaling parameter ξ

$$\Phi_n = \Phi_0 \left(\frac{m_n}{m_0}\right)^{\xi} = \Phi_0 \left(\frac{\sqrt{s_n}}{\sqrt{s_0}}\right)^{\xi}$$

Energy Peak in Cosmic-Rays

- With DM interpretation in mind, we propose alternative mechanisms based on the observation of the "*Energy-Peak*" in collider physics to explain cosmic-ray excesses.
- ✤ Why E-Peak?

- Large multiplicity

- Energy is the only available quantity

- Momentum w.r.t. the beam line
- Unique spectral features from 1st principle irrespective of underlying DM model details (vs. highly model-dependent in the conventional interpretation)

E-Peak: a Quick Review

A simple 2-body decay of a heavy resonance *B* into *A* and massless visible *a*

 \Box Energy of visible particle *a* is

monochromatic & simple

function of masses

B rest frame

 $\Box E_a^*$ measured & m_A known,

 $\rightarrow m_B$ determined, vice versa

E-Peak: a Quick Review

E-Peak: a Quick Review

• "stacking up" rectangles

 \Box Distribution in $E \rightarrow$ summing up the contributions from all relevant boost factors

 \rightarrow "<u>Stacking up</u>" rectangles weighted by boost distribution of particle B

 \Box Energy distribution has a unique peak at $E=E^*$

Applications

o-step cascade

- □ Simplest and conventional model
- □ Featured by a sharp peak

1-step cascade

- Introducing an on-shell intermediary state directly decaying into two photons (e.g. dark pion, ALP)
- □ Featured by a **box-like** distribution

2-step cascade

- Introducing an on-shell intermediary state before the state decaying into two photons
- Developing a plateau or a peak depending on model details
- Morphologically constrained: analytic expression for the shape available
- Alternative mechanism for cosmic-ray peaks
 e.g. 130 GeV/3.5 keV lines
 D. Kim & JCP [PLB (2015)]

3-step cascade

- Introducing one more on-shell intermediary state before the state decaying into two photons
- **Developing a smoothly rising-and-falling shape**
- Generic distribution function:

$$f(E_{\gamma}) \propto \exp\left[-\frac{w}{2}\left(\frac{E_{\gamma}}{E_{\gamma}^{*}} + \frac{E_{\gamma}^{*}}{E_{\gamma}}\right)^{p}\right]$$

Bump: Features of GeV Excess

✤ Signal: extended to > 10^o from the GC

- Consistent with the dynamical center of the Milky Way (< 0.05°)</p>
- ✤ The spectrum of the excess peaks at 1-3 GeV.

Bump: Conventional Approach

The spectrum is in good agreement with the predictions from 20-40 GeV

DM mostly annihilating to quarks (fragmentation, IC, bremsstrahlung, ...).

★ Required cross section is ~ 0.7-2.1 · 10⁻²⁶ cm³/s

Dark Cascade: GeV y-ray Bump

> Fitting function: $f_M(E_{\gamma}) = N \exp\left[-\frac{w}{2}\left(\frac{E_{\gamma}}{E_{\gamma}^*} + \frac{E_{\gamma}^*}{E_{\gamma}}\right)^p\right]$ with $E_{\gamma}^* = m_a/2$

 \succ cf. arXiv:1402.6703 (bb) → χ^2 /d.o.f.= 44/20 with $m_{\rm DM}$ =36.6 GeV

D. Kim & JCP, Phys Dark Univ (2016)

Multi-Component DM Models

Mechanism

□ What if there exist multiple DM species? What if the collection of DM particles have sufficiently small mass gaps (smaller than relevant energy resolution)?

Multi-Component DM Models

Mechanism

- □ What if there exist multiple DM species? What if the collection of DM particles have sufficiently small mass gaps (smaller than relevant energy resolution)?
- Obtaining continuum energy spectra not by cascade decays, but by increasing the number of DM species

Fit Results to GeV y-ray Bump

> Data reproduced well enough (see χ^2 values)

 \succ cf. arXiv:1402.6703 (bb) → χ^2 /d.o.f.= 64/20 (44/20) with $m_{\rm DM}$ =43.0 (36.6) GeV

K. Boddy, K. Dienes, D. Kim, J. Kumar, **JCP**, and B. Thomas (2016)

Line-like Excesses

Line-like Excesses

Application to 130 GeV line

□ Data extracted from the ULTRACLEAN event class in arXiv:1204.2797

□ Power-law background template considered simultaneously

Doojin Kim & JCP, PLB (2015)

Line-like Excesses

Application to 3.5 keV line

Data extracted from the MOS spectrum of the central region of the galaxy M31 in arXiv:1402.4119

□ Signal template only considered

Doojin Kim & JCP, PLB (2015)

Conclusions

- > Conventional DM interpretations on γ /cosmic-ray excesses:
 - 1. Line: directly into γ + X

2. Bump: into SM particle pairs $\rightarrow \gamma$'s, e's, ...

Conclusions

- > Conventional DM interpretations on γ /cosmic-ray excesses:
 - 1. Line: directly into $\gamma + X$ 2. Bump: into SM particle pairs $\rightarrow \gamma$'s, e's, ...
- > Alternative mechanisms using E-peak idea:

Non-minimal DM sector (e.g., Assisted FO, DDM, ...)

1. χ_h finally into $\chi_l + a(\rightarrow 2\gamma)$ via $\geq 1(2)$ step cascade

2. $\Sigma \chi_i$ into $X + a(\rightarrow 2\gamma)$

- > Reasonable χ^2 fits (χ^2 /d.o.f.~1)
- > Symmetric w.r.t the peak in logarithmic E_{γ}
 - → prediction: m_a

Conclusions

- > Conventional DM interpretations on γ /cosmic-ray excesses:
 - 1. Line: directly into $\gamma + X$ 2. Bump: into SM particle pairs $\rightarrow \gamma$'s, e's, ...

χı

χ'n

χh

 $\Sigma \chi_i$

 $\Sigma \chi_i$

A

R

 χ_l

> Alternative mechanisms using E-peak idea:

Non-minimal DM sector (e.g., Assisted FO, DDM, ...)

1. χ_h finally into $\chi_l + a(\rightarrow 2\gamma)$ via $\geq 1(2)$ step cascade

2. $\Sigma \chi_i$ into $X + a(\rightarrow 2\gamma)$

- > Reasonable χ^2 fits (χ^2 /d.o.f.~1)
- > Symmetric w.r.t the peak in logarithmic E_{γ}
 - → prediction: m_a

Unweighted *E* Spectrum

K. Boddy, K. Dienes, D. Kim, J. Kumar, **JCP**, and B. Thomas (2016)

Hitomi Perseus

Kevork Abazajian @kevaba Following

#Hitomi constraints on 3.5 keV dark matter relative to previous constraints & signals. Significantly weaker...

Kenny C.Y. NG, LHC Results Forum 2016

Line-like Excesses

Scenario III

□ Analytic expression for E spectrum available

$$f(E_{\gamma}) = \int_{\gamma_{a}^{\min}}^{\gamma_{a}^{\max}} d\gamma_{a} \frac{g(\gamma_{a})}{2E_{\gamma}^{*}\sqrt{\gamma_{a}^{2}-1}}$$
(11)
$$= \frac{m_{a}}{4E_{\gamma}^{*}p_{a}^{*}\sqrt{\gamma_{A}^{2}-1}} \left\{ \log \left[\sqrt{(\gamma_{a}^{\max})^{2}-1} + \gamma_{a}^{\max} \right] - \log \left[\sqrt{(\gamma_{a}^{\min})^{2}-1} + \gamma_{a}^{\min} \right] \right\},$$
(12)

where γ_a^{\min} and γ_a^{\max} are defined as

$$\gamma_a^{\min} \equiv \max\left[\gamma_a^-, \frac{1}{2}\left(\frac{E_\gamma}{E_\gamma^*} + \frac{E_\gamma^*}{E_\gamma}\right)\right], \ \gamma_a^{\max} \equiv \gamma_a^+.$$
(13)
$$\gamma_a^{\pm} \equiv \frac{E_a^*}{m_a}\gamma_A \pm \frac{p_a^*}{m_a}\sqrt{\gamma_A^2 - 1}.$$

\Box Fit parameters: $E_{\gamma}^*, \gamma_a^+, \gamma_a^-$

Possible to distinguish DM models to give a line-like signature using morphological features

	Scenario i)	Scenario ii)	Scenario iii)
Peak existence	Always	Absent	Sometimes
Plateau existence	Absent	Always	Sometimes
Width	Instrumental	Physical	Physical
Symmetry in ${\cal E}$	Symmetric	Not available	Asymmetric
Symmetry in $\log E$	Asymmetric	Not available	Symmetric
Shape in E	Curved	Rectangular	Curved
Shape in $\log E$	Curved	Rectangular	Oblique

Doojin Kim & JCP, arXiv:1508.06640

Bounds of Axion-Like Particles

• Limits from current experiments

Jaeckel et al. (2015)

Advertisement

Available on the CERN CDS information server

CMS PAS TOP-15-002

CMS Physics Analysis Summary

Contact: cms-pag-conveners-top@cern.ch

2015/09/16

Measurement of the top-quark mass from the b jet energy spectrum

The CMS Collaboration

Example: M_{top} Measurement

arXiv: 1209.0772

Detector level test

 \Box (Assuming W mass is well-known,) the result is quite good.

 $< m_{\rm top} > = 173.1 \pm 2.5 \, {\rm GeV}$

Compared with the traditional method, o urs is simpler.:

purely based on the kinematics and not rely at all on the detailed knowledge of underlying dynamics of top decay such as matrix element of the process.

Energy Peak

arXiv: 1209.0772

Analysis: introduction of an ansatz

- Generic distributions are obtained by an
 integration over the boost factor with **unknown** boost distribution *g*(γ), generally, not doable
- □ Nevertheless, there are common features of f(E)
 - ★ Even under $E/E^* \leftrightarrow E^*/E$
 - Maximized at $E = E^*$
 - ♦ Vanishing as *E* goes to $0/\infty$
 - **\diamond** Returning a δ -function for some limiting parameter choice

$$F(E) = \frac{1}{K_1(w)} \exp\left[-\frac{w}{2}\left(\frac{E}{E^*} + \frac{E^*}{E}\right)\right]$$

Energy Peak

Proposal of a "simple" ansatz

$$f(E) = \frac{1}{K_1(p)} \exp\left[-\frac{p}{2}\left(\frac{E}{E^*} + \frac{E^*}{E}\right)\right]$$

 $\Box K_1(p)$: modified Bessel function of the second kind of order 1

 $\mbox{$\square$}\ p$: fitting parameter which encodes the width of the peak

 $\Box E^*$ as a *fitting parameter* can be extracted by fitting!

 \Box All four properties are satisfied. \rightarrow for the last property, use the asymptotic behavior of $K_{I}(p)$

 $K_1(p) \xrightarrow{p \to \infty} \sim \frac{e^{-p}}{\sqrt{p}} \left(1 + \mathcal{O}\left(\frac{1}{p}\right) \right)$

□ Proposed ansatz does not develop a cusp so that it is more suitable for the case of *g*(1)=0, e.g., pair-production of mothers

Fitting Function

arXiv: 1209.0772

Functional properties of generic f(E)

$$f(E) = \int_{\frac{1}{2}\left(\frac{E}{E^*} + \frac{E^*}{E}\right)}^{\infty} d\gamma \frac{g(\gamma)}{2E^*\sqrt{\gamma^2 - 1}}$$

 E^*

1) Even under
$$\frac{E}{E^*} \leftrightarrow \frac{E^*}{E}$$
 or $E \to \frac{E^{*2}}{E}$

- 2) Maximized at $E=E^*$
- 3) Vanishing as *E* goes to zero or infinity
- 4) Returning a δ -function for some limiting par ameter choice

Based on Doojin Kim's talk @ KVNP Workshop at Caltech, 2013

Multi-DM Set-up: Assisted FO

- ***** Two species of DM: χ_h , χ_l with $m_h > m_l$ (e.g. $U(1)' \otimes U(1)'', Z'_2 \otimes Z''_2$)
- x_h : dominant DM component, no direct coupling to the SM
 - ➔ Assisted Freeze-Out
- * χ_l : sub-dominant, direct coupling to the SM ($\mathcal{L} \supset -\frac{1}{2} \sin \epsilon X_{\mu\nu} F^{\mu\nu}$)

