"Large" hadron collider? What, that little thing?

Durham

University

Richard Massey Andrew Robertson, David Harvey, Peter Taylor, Mathilde Jauzac, Vince Eke

SIDM solves all of ACDM's "small-scale crises"

- → core formation (cusp/core)
- → removal of small substructure (missing satellites)
- → reduced circular velocity (too big to fail)
- → core size sensitive to baryons (diversity of rotation curves)

Rocha+ 2013

Observable tests of SIDM - 1: BCG oscillations

Observable tests of SIDM - 2: sphericity

Vogelsberger+ 2012

Observable tests of SIDM - 3: particle colliders

Friction on SIDM makes it lag behind the stars

Kahlhoefer et al. 2014, MNRAS 441, 404

The "perfect" bullet: Abell 4067?

Chon et al. 2015 A&A 574, 132

The "perfect" bullet: Abell 3827?

Williams & Saha 2011 MNRAS 415, 448

Mass offset from stars

Massey et al. 2015 MNRAS 449, 3393

skew=0.21±0.12, in direction of offset (Taylor et al. in prep)

> DM-stars offset by 1.6±0.5 kpc (Massey et al. 2015)

Never seen in CDM simulations (Schaller et al. 2015)

Isolating mass components from the 4 galaxies Taylor et al. 2017 MNRAS in prep offset=1.6±0.5 kpc skew=0.21±0.12 Projected density in stars $[M_{\odot}/kpc]$ Contours: density of DM 10⁷ 10⁶ $\sigma/m > 10^{-4} \text{ cm}^2/\text{g}$ (Massey et al. 2015) 6 $\sigma/m > 2 \text{ cm}^2/g$ 10⁵ (Kahlhoefer et al. 2015) $\sigma/m > 0.01 \text{ cm}^2/\text{g}$ (Taylor et al. in prep)

Friction on SIDM makes it lag behind the stars

Kahlhoefer et al. 2014, MNRAS 441, 404

"Jellyfish" galaxies show the direction of motion, long after the gas has been removed

DM colliders are ubiquitous

σ/m_χ < 1.25 cm²/g Clowe et al. (2004), ApJ 758, 128 **σ/m_χ < 4 cm²/g** Bradac et al. (2008), ApJ 648, 109

σ/m_χ < 3.8 cm²/g Mahdavi et al. (2007), ApJ 668, 806

σ/m_χ < 3 cm²/g Merten et al. (2011), MNRAS 417, 333

Statistical bulleticity in 72 colliding DM halos [kpc]

Future prospects: physics of DM self-interaction

Kahlhoefer et al. 2014, MNRAS 437, 5865 Boehm et al. 2010, PRL 105, 1301

> Long range – frequent interactions, with low momentum transfer Directional scattering $d\sigma/d\Omega$ (θ ,v)

Substructure deceleration

Massless (e.g. γ') Massive (e.g. Z')

Short range – rare interactions, with high momentum transfer Isotropic scattering σ

Substructure evaporation

Astronomical particle colliders

Weak lensing, X-ray & optical analysis of 72 minor mergers
✓ 7.6σ detection of dark mass
✓ DM and stars aligned within 5.8±8.2 kpc (68% CL)
✓ Upper limit σ_{DM}<0.47cm²/g (95% CL)
✓ Extendable to 10,000s with eg eROSITA, SuperBIT/WFIRST (other experiments are available from your usual retailer)

Strong lensing & optical analysis of 1 infalling galaxy
 ✓ 1.6±0.5 kpc offset from DM to stars (68% CL)
 ✓ Consistent with prediction of SIDM; never created by CDM
 ✓ Lower limit σ_{DM}>0.01 cm²/g, but uncertain dynamics
 ✗ The right conditions to enable all measurements are rare