Constraints on dark matter models
from anomalous strong lens systems
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Large scale structure of the Universe
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The ACDM model reproduces well
the large scale (>Mpc) structure of the Universe




Small scale crisis |

When N-body simulations in the ACDM model and observations are
compared, problems appear at (sub)galactic scales: small scale crisis
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Sterile neutrino as mixed dark matter

sterile neutrino radiative decay as an origin of 3.5 keV anomaly
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Missing satellite problem in MDM models
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Possible solution |

Above Discussions are based on S| S— |
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- heating from ionizing photons - ionizing photons emitted and spread
around reionization of the Universe heat and evaporate gases

- mass loss by supernova explosions - supernova explosions blow
gases from inner region = DM redistribute along shallower potential




Advantage of gravitational lenses

Observation

Direct measurement -
gravitational potentials: the WHOLE matter (DM+baryons) distribution
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We propose a NEW GRAVITATIONAL LENS
MEASUREMENT to probe sub-galactic scale structure

Theory

- Non-linear evolution - perturbation theory breaks down

— time/resource-consuming N-body simulations (and detailed
comparison with analytic approach)

- co-evolution of DM halos and baryon processes (supernova
explosions, galaxy formation...)

— state-of-the-art hydrodynamic simulations

and elaborate modeling of baryon processes




Anomalous flux ratio
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Singular isothermal ellipsoid (SIE)
for lens galaxy provides a good-fit
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observed value (A+C)/B =1.5

(20 or more)




Possible Perturbers subdominant (?)

Chen et al., ApJ




Line-of-sight matter density fluctuations

N-body simulation
to measure non-linear
matter power spectra

perturbed magnification
n: a convolution of
non-linear matter spectra
with a certain Kernel
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Likelihood

p-value: probability of finding a sample that
IS more unlikely than the observed value
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Summary and prospect

- Gravitational lens is a powerful tool to probe
the (relatively) small-scale clustering property of the Universe

- 3.5 keV-line motivated (sterile neutrino) mixed DM models
likely reproduce simultaneously the small number of

the observed dwarf spheroidal galaxies

and anomalous flux in QSO quadrupole lens systems

- Sub-millimeter galaxy lens samples are expected to be found
in on-going ALMA data

- More precise understanding of structure formation
(non-linear evolution) in non-CDM models is indispensable

— need a help of analytic approach
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