Constraints on dark matter models from anomalous strong lens systems

Based on <u>AK</u>, K. T. Inoue, T. Takahashi, PRD, 2016

Nov. 21, 2016 @ IPPP-Durham

Large scale structure of the Universe

The ACDM model reproduces well the large scale (>Mpc) structure of the Universe

Small scale crisis I

When *N*-body simulations in the \land CDM model and observations are compared, problems appear at (sub)galactic scales: **small scale crisis**

Sterile neutrino as mixed dark matter

Missing satellite problem in MDM models

Possible solution I

 heating from ionizing photons - ionizing photons emitted and spread around reionization of the Universe heat and evaporate gases

- mass loss by supernova explosions - supernova explosions blow gases from inner region \rightarrow DM redistribute along shallower potential

Advantage of gravitational lenses

Anomalous flux ratio

Line-of-sight matter density fluctuations

Likelihood

Summary and prospect

- Gravitational lens is a powerful tool to probe the (relatively) small-scale clustering property of the Universe

- 3.5 keV-line motivated (sterile neutrino) mixed DM models likely reproduce simultaneously the small number of the observed dwarf spheroidal galaxies and anomalous flux in QSO quadrupole lens systems

- Sub-millimeter galaxy lens samples are expected to be found in on-going ALMA data

 More precise understanding of structure formation (non-linear evolution) in non-CDM models is indispensable
→ need a help of analytic approach