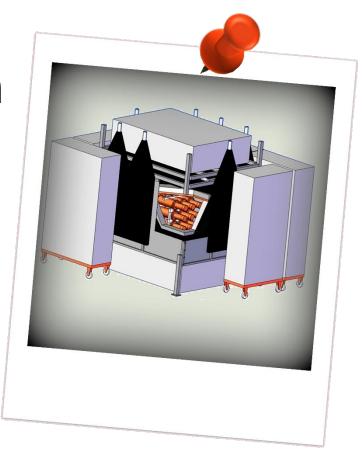


Testing DAMA/LIBRA signal with ANAIS-112


M. Martinez, On behalf of the ANAIS coll.

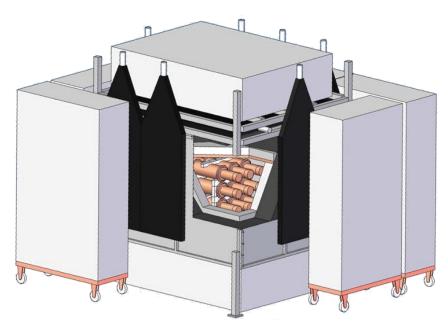
3rd IBS-MultiDark-IPPP Workshop, 21-25 November 2016, Lumley Castel, Durham

- The ANAIS program
- Detectors performance
- Background
- ANAIS-112 status & prospects
- Summary


J. Amaré, S. Cebrián, C. Cuesta, E. García, M. Martínez, M.A. Oliván, Y. Ortigoza, A. Ortiz de Solórzano, J. Puimedón, M.L. Sarsa, J.A. Villar, P. Villar

The ANAIS program

- Detectors performance
- Background
- ANAIS-112 status & prospects
- Summary



ANAIS: Annual Modulation with Nal Scintillators

Confirmation of DAMA-LIBRA modulation signal:

- same target and technique
- different experimental approach
- different environmental conditions affecting systematics

3x3 matrix of 12.5 kg cylindrical NaI(TI) modules (112.5 kg of active mass)

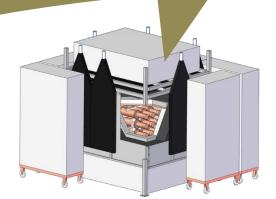
At Canfranc Underground Laboratory (SPAIN) 2450 m.w.e.

The ANAIS program

2 X 12.5 kg Alpha Spectra Inc.

ANAIS-25

9.6 kg Saint-Gobain ANAIS-0


10.7 kg BICRON

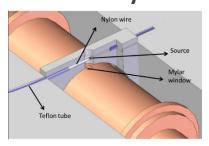
ANAIS-37
3 X 12.5 kg
Alpha Spectra Inc.

ANAIS-112
9 X 12.5 kg
Alpha Spectra Inc.

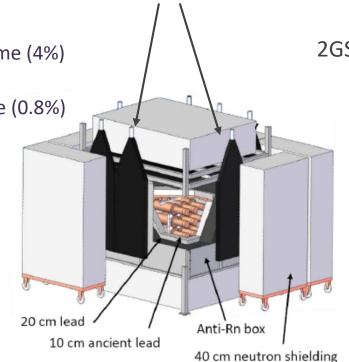
ANAIS detectors

12.5 kg NaI(TI) modules:

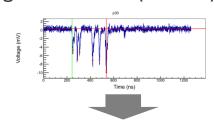
- built @ AS, Co (US) from NaI selected powder
- 4.75" φ x 11.75" length cylindrical shape
- OFE copper encapsulation+ Teflon diffusor
- Mylar window for low energy calibration
- Two optical windows for PMT coupling
- PMTs: Ham12669SEL2 with high quantum efficiency (>33%) and low dark current



Experimental features


High duty cycle

ANAIS-25-III Down time (4%) Live time (95.2%) Dead time (0.8%)


Radon-free low energy calibration system

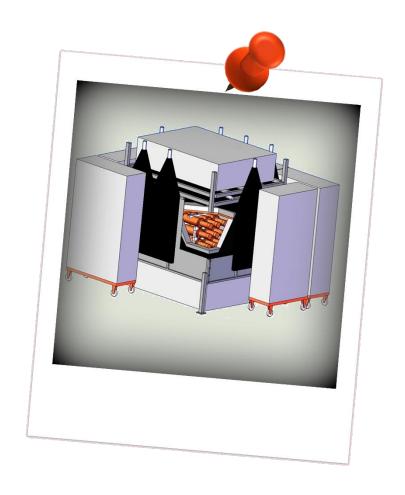
Muon-tagging system

Individual PMT signals digitized 2GS/s with high resolution (14 bits)

Robust algorithm for peak identification @ low Energy!

Monitor environmental parameters:

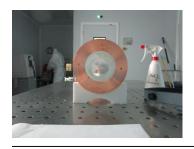
(External radon air content, humidity, temperature (inside/outside/electronics), pressure, antiradon N₂ flux, PMT HV, gain, trigger rate and level, coincidence window


Electronics:

Air conditioned room to decouple from temperature fluctuations

- The ANAIS program
- Detectors performance
- Background
- ANAIS-112 status & prospects
- Summary

Detectors @ LSC so far


 D0 / D1 modules: First AS modules grown with purified Nal powder under 90ppb

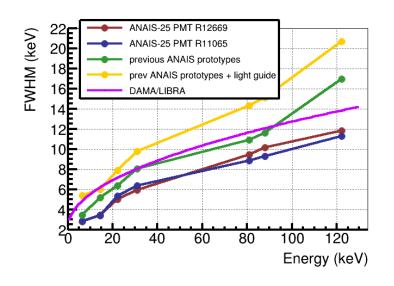
Dec 2012: ANAIS-25 set-up

 D2 module: WIMPScint-II powder, Improved protocols to reduce ²¹⁰Pb

March 2015: ANAIS-37 set-up (D0+D2+D1)

• **D3 module**: WIMPScint-III powder, Improved powder purification to reduce potassium

March 2016: ANAIS-37 set-up (D0+D3+D2)

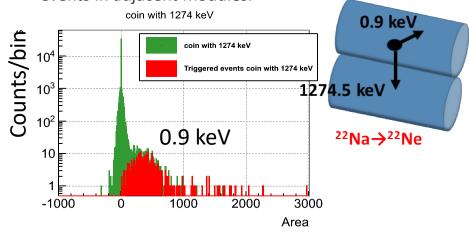


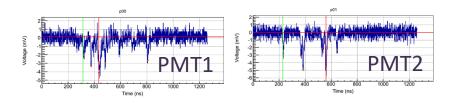
 D4 / D5 modules: WIMPScint-III powder just arrived @ LSC

Light Collection: excellent!!

Detector	setup	Light collected (phe/keV) @ 22 keV		
D0	ANAIS25 ANAIS37 ANAIS37	15.6 ± 0.2 15.3 ± 0.1 15.1 ± 0.1		
D1	ANAIS25 (*) ANAIS25 ANAIS37	12.6 ± 0.1 15.2 ± 0.1 14.4 ± 0.1		
D2	ANAIS37	15.4 ± 0.1		
D3	ANAIS37	15.2 ± 0.5		

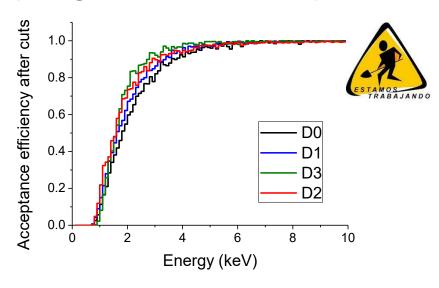
(*)PMT: Ham R11065


All AS Detectors in all setups: Excellent light collection that translates into good energy resolution and threshold

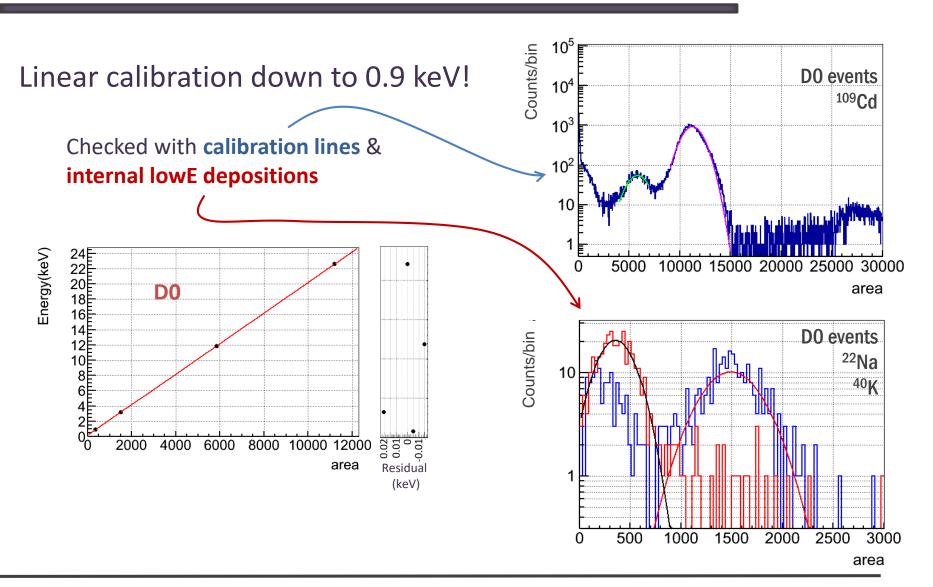

Energy threshold

 Trigger threshold below 1 keV with high trigger efficiency

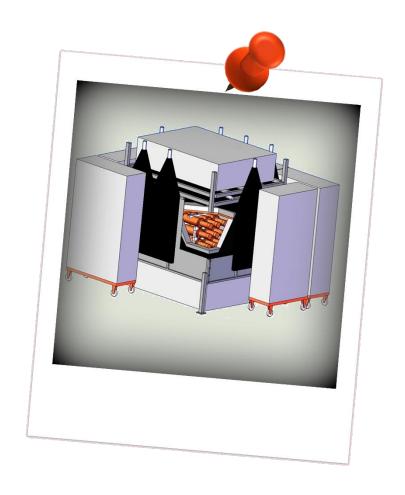
Trigger efficiency determined by coincidences between high energy gammas and low energy events in adjacent modules.



0.9 keV events:

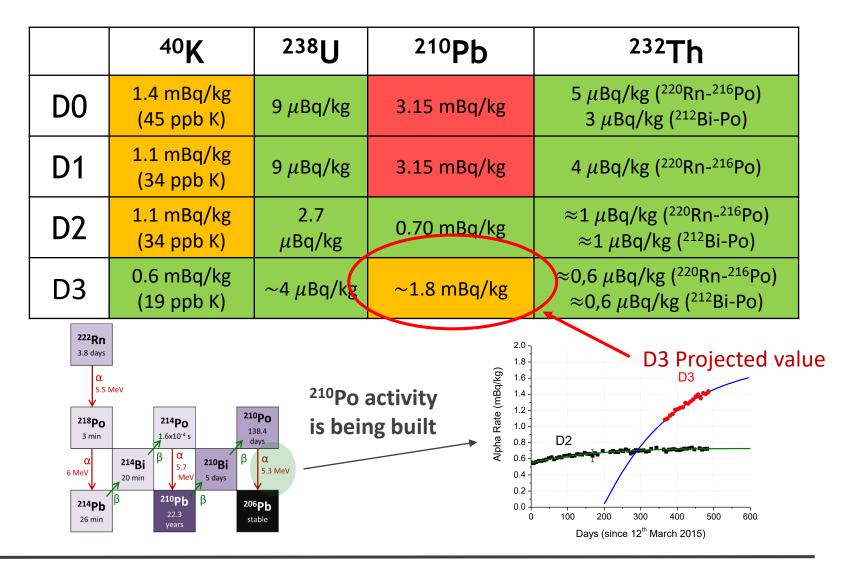

- Data selection at Low E: multiparametric cut
 - -Number of peaks in the pulse (>2 per PMT)
 - -Temporal parameters of the total light pulse
 - -Asymmetry in the light sharing

Robust acceptance efficiency Estimate (during ¹⁰⁹Cd/⁵⁷Co calibrations)



Energy calibration: linearity

- The ANAIS program
- Detectors performance
- Background
- ANAIS-112 status & prospects
- Summary


Detector internal contaminants

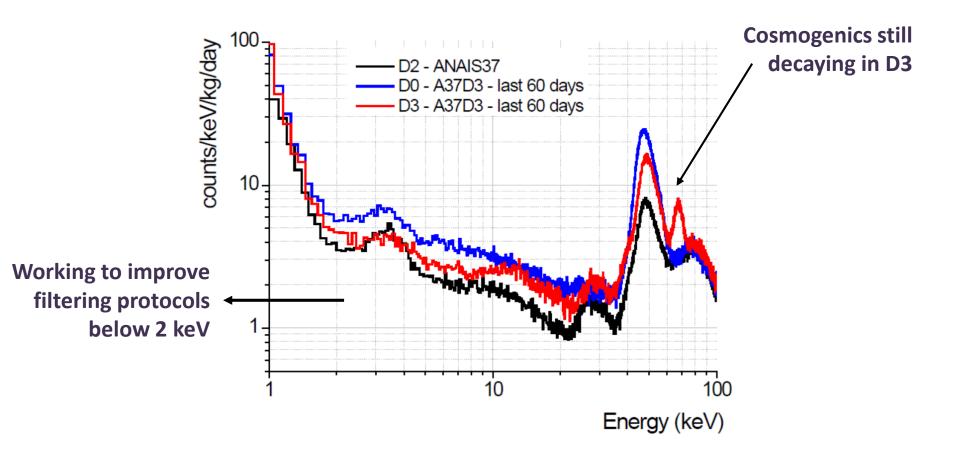
	⁴⁰ K	²³⁸ U	²¹⁰ Pb	²³² Th
D0	1.4 mBq/kg (45 ppb K)	9 μBq/kg	3.15 mBq/kg	5 μBq/kg (²²⁰ Rn- ²¹⁶ Po) 3 μBq/kg (²¹² Bi-Po)
D1	1.1 mBq/kg (34 ppb K)	9 μBq/kg	3.15 mBq/kg	4 μBq/kg (²²⁰ Rn- ²¹⁶ Po)
D2	1.1 mBq/kg (34 ppb K)	2.7 μBq/kg	0.70 mBq/kg	$pprox$ 1 μ Bq/kg (220 Rn- 216 Po) $pprox$ 1 μ Bq/kg (212 Bi-Po)
D3	0.6 mBq/kg (19 ppb K)	~4 μBq/kg	~1.8 mBq/kg	\approx 0,6 μ Bq/kg (220 Rn- 216 Po) \approx 0,6 μ Bq/kg (212 Bi-Po)

- Very good levels of ²³⁸U & ²³²Th
- Acceptable levels of ⁴⁰K (improved in last module to the DAMA upper limit)
- ²¹⁰Pb out-of-equilibrium contamination, improved in D2, but increased again in D3

Detector internal contaminants

Studying ²¹⁰Pb contamination

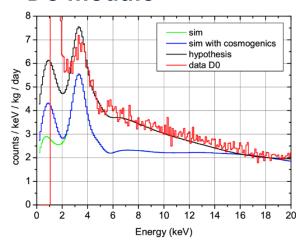
Origin of the ²¹⁰Pb contamination is under study in collaboration with AS → 1 kg crystals tests at LSC

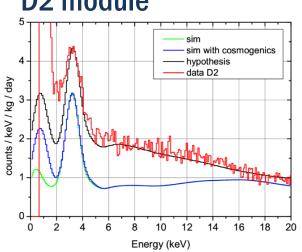


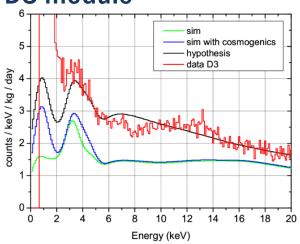
Two of the samples measured by now are below 0.7 mBq/kg (D2 level)

Background @ low E

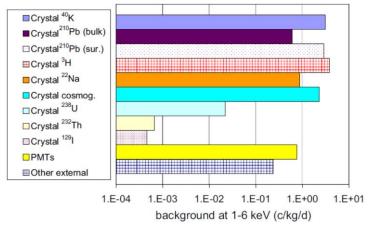
Dominated by ²¹⁰Pb (continuum) & ⁴⁰K (peak) contaminations in the crystal




Background budget

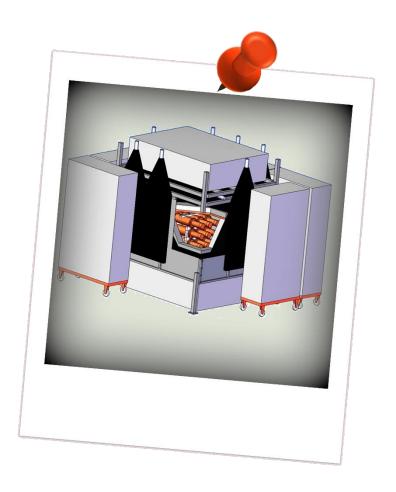


D2 module



D3 module

In all detectors: continuum excess at low energy can be explained by including ³H and ²¹⁰Pb at a surface depth from 10-100 μ m


D2 module

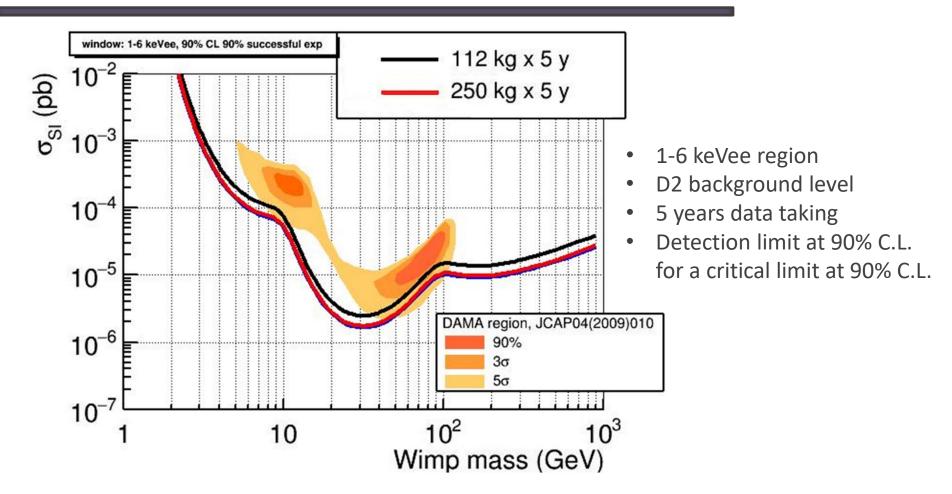
Eur. Phys. J. C (2016) 76:429

- The ANAIS program
- Detectors performance
- Background
- ANAIS-112 status& prospects
- Summary

D4 & D5 arrived at LSC!

- D4 -> same ingot as D3
- D5 -> same ingot as AS2K2/3

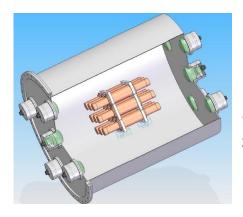
Nov 14th: Start data-taking for bkg assesment



SCHEDULE (if required ²¹⁰Pb & ⁴⁰K levels confirmed)

- Start D6, D7, D8 (ASK2/3 ingot) purchasing immediately (MD funding)
 - production: 6/8 weeks
 - transport: 4 weeks
- February: Mounting ANAIS-112
- End February/ beginning March: START DATA-TAKING

ANAIS-112 sensitivity



(Following S. Cebrián et al., Astroparticle Physics 14, 2001, 339)


Liquid Scintillator Veto Simulation

It could be incorporated to ANAIS-112 in a second phase of the experiment

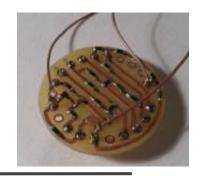
LSVc 3.8 t LAB scintillator

LSVb 1.7 t I AB scintillator (fits in present experimental setup)

	R.F. (%) 40K from crystals	R.F. (%) ²² Na from crystals	R.F. (%) PMTs	R.F. (%) All
3x3 modules	69.0	62.4	62.3	83.7
3x3 modules + LSVb (500 keV threshold)	20.5	11.0	31.1	61.3
3x3 modules + LSVb	14.5	3.7	7.3	56.6
3x3 modules + LSVc (500 keV threshold)	15.5	5.7	29.3	59.1
3x3 modules + LSVc	11.9	1.2	7.3	55.6

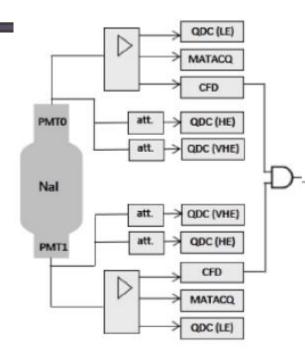
- ANAIS experimental proposal:
 - 112.5 kg (3x3 crystals matrix) of NaI(TI) at LSC:
 - 6 modules available at LSC (75 kg) /waiting for 3 more with improved radiopurity
 - Blind Analysis Strategy
- Good quality NaI(TI) detectors from Alpha Spectra:
 - Outstanding light collection
 - Triggering at 1 keVee
 - Potassium content at 20ppb level
 - ²¹⁰Pb required level to be confirmed with D5
- Shielding, DAQ system and software ready at LSC Hall B
- Expected to start data-taking by the beginning of March 2017
- Neutron calibrations and REF measurements pending

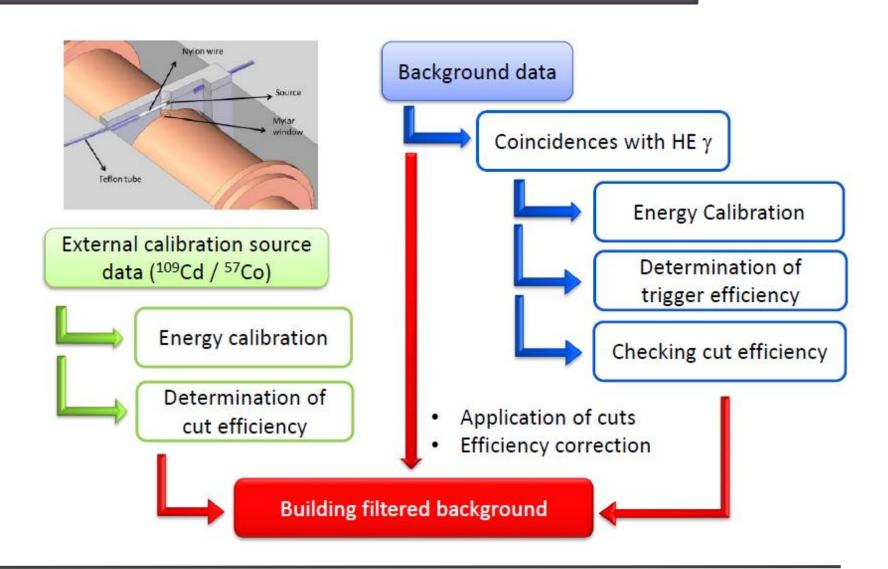
Good sensitivity prospects for exploring the DAMA/LIBRA signal in a model independent way: **DISCOVERY POTENTIAL**


2xHE PMT Ham12669SEL2 model coupled to each module at LSC clean room

- High Quantum Efficiency / Low dark current
- Electroformed copper housing made at LSC facility
- Voltage dividers made of Cuflon PCB
- PMT Radioactivity screening at LSC

Component	Unit	⁴⁰ K	$^{232}\mathrm{Th}$	²³⁸ U	$^{226}\mathrm{Ra}$
PMTs (R12669SEL2)	$\mathrm{mBq/PMT}$	97±19 133±13 108±29 95±24 136±26	20 ± 2 20 ± 2 21 ± 3 22 ± 2 18 ± 2	128 ± 38 150 ± 34 161 ± 58 145 ± 29 187 ± 58	84±3 88±3 79±56 88±4 59±3
mean activity all units	$\mathrm{mBq/PMT}$	111±5	20 ± 3 20.7 ± 0.5	144±33 157±8	82.5±0.8




- DAQ hardware and software designed and tested with ANAIS-25 and ANAIS-37 set-ups
 - Individual PMT signals digitized (*) and fully processed
 - Trigger at phe level for each PMT
 - Logical AND coincidence in 200ns window for each module triggering
 - Redundant energy conversion in different ranges (digitized signal + QDCs)
 - (Logical XOR trigger among different modules)
 - * CAEN V1729A VME 6U board MATACQ chip
 - * 14 bits / 2 GS/s
 - * 300 MHz bandwidth
 - * ±1V
 - 4 channels

Data analysis strategy

Background understanding

Simulations of the different modules using Geant-4 package Input contamination determined by HPGe spectrometry for external components and PMTs, and taking internal contaminations values derived as shown before

CRYSTAL

 $3.2 - 0.6 \text{ mBq/kg}^{210}\text{Pb}$

 $1.0 - 0.6 \text{ mBq/kg}^{40}\text{K} (34 - 19 \text{ ppb K})$

0.94 mBq/kg ¹²⁹l

U/Th chains in the NaI bulk

Cosmogenic backgrounds (all isotopes

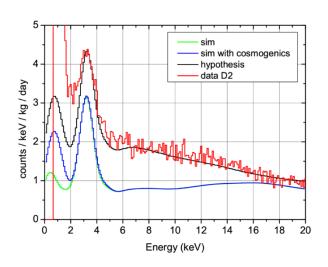
but ²²Na in saturation)

PMTs

Upper bounds on:

Quartz window

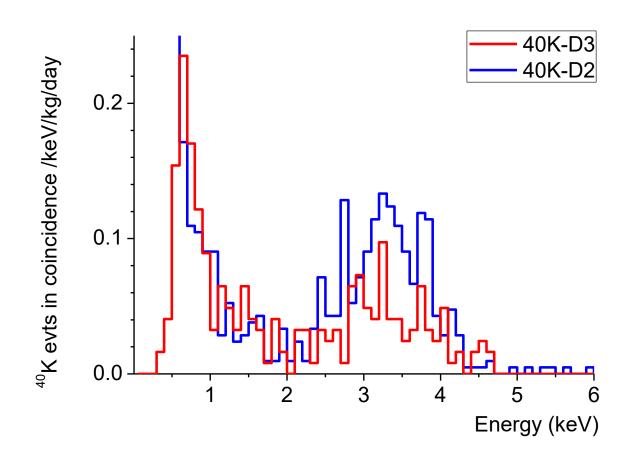
Silicone pads


Copper housing

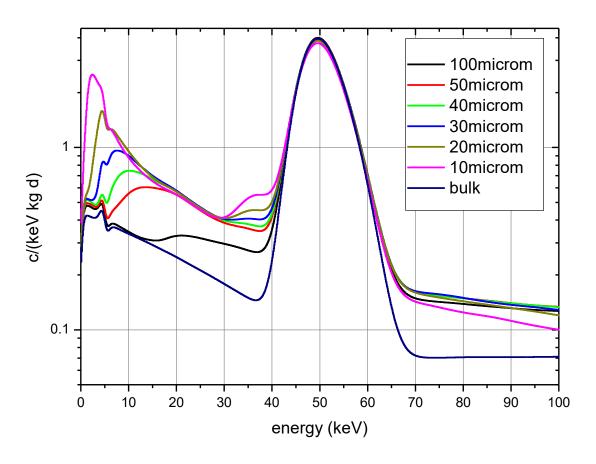
Residual Radon

Lead shielding

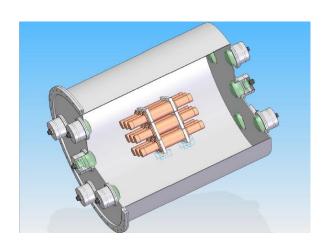
+ HYPOTHESIS:


- Some ²¹⁰Pb at surface
- -0.09 0.18 mBq/kg ³H in the bulk

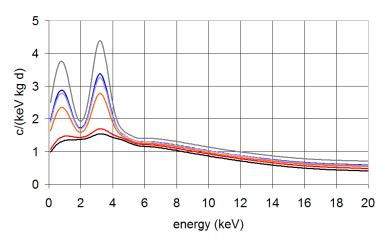
Eur. Phys. J. C (2016) 76:429

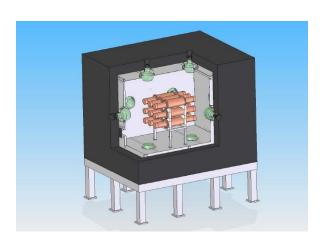


⁴⁰K D3 Vs D2

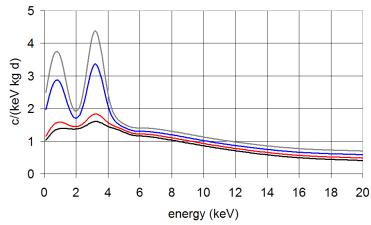


²¹⁰Pb in the crysal surface could provide an explanation for the low energy background features

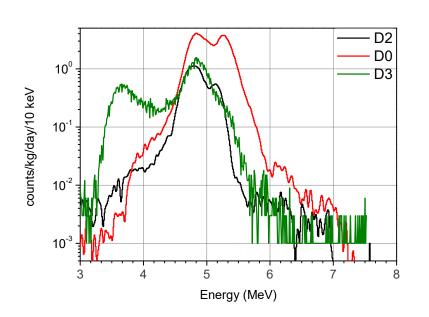


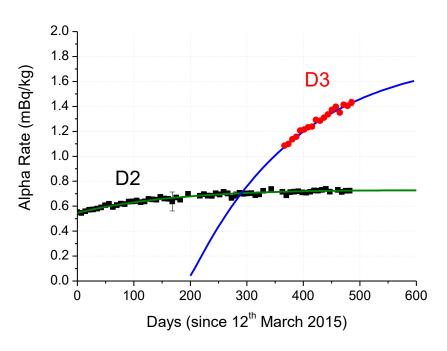


Liquid scintillator veto simulation



LSVc 3.8 t LAB scintillator




LSVb
1.7 t LAB scintillator
It fits in present
experimental
configuration

Alpha spectrum

Very different alpha spectrum in D3 with respect to that of D2 Surface contaminations?