Searches for long-lived particles at the LHC

ATLAS & CMS have published numerous searches for long-lived, exotic particles.

- What motivates these searches ?
- What strengths & weaknesses do the two detectors have for such searches?

- I will present analyses illustrating the main techniques and ask:
 - How well are we exploring the phase space ?
 - How are we doing with model-independent results?

Motivation

 Theoretical physicists are brilliant at inventing models with long-lived (LL) particles !

There are loads of them:

e.g. In RPV SUSY, AMSB SUSY, GMSB SUSY, Hidden Valley models ...

• Lessons:

- > LL exotica are well worth looking for.
- Experimental searches should use simple signatures that are each sensitive to many LL models.
- Present limits in model-independent way !

Motivation

• Long-lived signatures can hide new physics, such as SUSY, from conventional ATLAS & CMS searches.

e.g. In the case of SUSY:

- > If LSP decays to visible particles before calorimeter, then E_T^{miss} signature used by classic SUSY searches will disappear.
- What about dedicated RPV SUSY searches? These assume the LSP decays promptly, so fail if the LSP decay length exceeds a few mm.

Searching for Long-Lived Particles illustrated with the CMS detector

Tracker can reconstruct charged particles from LL particle decay up to 50 cm from LHC beam-line.

Heavy, charged particles traversing Tracker can be found via dE/dx measurement.

They are also identified in μ -chambers via time-of-flight (TOF) measurement.

ECAL can find photons from LL particle decay via time-of-flight (TOF) measurement.

ATLAS better at some things:

- Their ECAL is great at finding photons from LL particle decay, as it measures photon *direction*.
- Their muon chambers are surrounded by *air*, not *iron*, so they can track hadrons from LL particle decay inside them, in addition to muons.

Very Long-Lived Charged Particles

(i.e., which traverse detector before decaying)

CMS search for heavy stable charged particles (HSCP) (CMS-PAS-EXO-16-036)

CMS analysis with 13/fb of 13 TeV 2016 data.

- HSCP are massive & slow moving.
- There are 3 key selection variables:
 - 1. Track Pt
 - 2. dE/dx from Tracker
 - 3. TOF from μ chambers
- These 3 variables are statistically uncorrelated for SM particles, which allows the background to be estimated from the data.
 - e.g. dE/dx has little dependence on Pt for relativistic particles.

CMS search for heavy stable charged particles Different search strategies for different particles!

- Search for long-lived ğ, t and τ.
 Coloured particles (ğ, t) hadronize into R-hadrons with SM q/g.
- R-hadrons flip charge as they pass through the CMS detector material. A charged R-hadron may be neutral when it reaches the outer detector!
- Unsure how often \tilde{g} forms neutral hadron with g. Could be 100%! If so, track would start neutral (invisible) but may become charged through interaction with detector.
- Therefore do searches using:
 - > "tracker + muon chambers" (for $\tilde{\tau}$)
 - "tracker only"

(for initially charged R-hadron: \tilde{t} , \tilde{g})

> "muon chambers only" (for initially neutral R-hadron: \tilde{g})

CMS search for heavy stable charged particles Results

• 95% CL lower mass limits obtained:

• N.B. Limits on \tilde{g} & \tilde{t} vary by ~100 GeV, depending on R-hadron assumptions.

CMS search for HSCP (CMS/2015 arXiv:1502.02522) Towards model independent results ...

- Publish number of data candidates passing cuts & the expected background.
- Publish selection efficiency vs. Pt, $\beta \& \eta$ of HSCP.
- If HSCP lifetime is small, multiply this by prob that it transverses CMS before decaying: exp[-M L(η) / c τ P]. 18.8 fb⁻¹ (8 TeV)

ATLAS search for heavy stable charged particles (HSCP) (arXiv:1604.04520+1606.05129)

Based on 3/fb of 13 TeV 2015 data.

Very Long-Lived Neutral Particles?

(i.e., which traverse detector before decaying)

Only detectable via E_t^{miss} signatures.

Detecting long-lived, neutral particles via E_t^{miss} searches. An example ...

• Jet+MET searches provide limits on long-lived, neutral particles that decay outside the detector & so are invisible.

Model-independent monojet limits

- 19.7 fb⁻¹ (8 TeV) $\sigma_{vis}^{BSM} = \sigma \times A \times \varepsilon \ [pb]$ • e.g. The CMS monojet search CMS (arXiv:1408.3583) limits _ 95% CL Expected limits 95% CL Observed limits pair production of dark $\pm 1\sigma_{exp}$ matter particles accompanied $\pm 2\sigma_{exp}$ by ISR jet. The same limits apply to LL neutral particles that decay outside CMS ($R \gtrsim 10$ m). Belyaev *et al* extend this 10-2 method to put limits on LL signals vs. lifetime. (arXiv::1512.02229) 250 300 350 400 450 500 550 E_{T}^{miss} Threshold [GeV]
 - lan Tomalin 03/11/2016

Long-Lived Particles that decay within the detector volume

Look for leptons, jets or photons that do not originate at the pp collision point.

Search for long-lived particles decaying to displaced photons ATLAS/2014 (arXiv:1409.5542)

- In GMSB SUSY: long-lived $\tilde{\chi}^0 \rightarrow \gamma \tilde{G}$.
- Expect 2 $\tilde{\chi}^0$ per event, so trigger requires 2 photons.
- Offline, also require missing Et from \tilde{G} .

Search for long-lived particles decaying to displaced photons ATLAS/2014

- ATLAS can also measure TOF of photon in ECAL.
 - TOF should be smaller for photons from background than those from signal.

Search for long-lived particles decaying to displaced photons (ATLAS/2014)

- Fit to photon z_0 impact parameter & TOF distributions to get limits in plane of $\tilde{\chi}^0$ lifetime vs. mass, assuming SPS8 SUSY parameters.
- Limits based on 20/fb of 8 TeV 2012 data.

CMS search for LL particles decaying to displaced jets in tracker (CMS/2014 - arXiv:1411.6530)

- CMS searches with 19/fb of 8 TeV 2012 data for LL particle decays to $(q, \overline{q}, anything)$.
 - Look for 2 jets whose associated tracks form a single *displaced vertex* in Tracker.
- Example of signal models considered: Higgs $\rightarrow 2X \rightarrow (q\bar{q})(q\bar{q})$,

- Main difficulty is **triggering** on these events.
 - Required 2 jets of Et > 60 GeV with few associated prompt tracks.
 - Also required HT > 300 GeV (total transverse energy in event) Makes analysis insensitive to 125 GeV Higgs decays!
 - Threshold could be reduced in future by triggering on other particles produced in association with LL particle. (But increases model-dependence).

CMS search for long-lived particles decaying to displaced jets in tracker

Only 2 events passed selection, consistent with expectation, so quote limits.

ATLAS search for LL particles decaying to displaced jets in muon spectrometer (ATLAS/2015 - arXiv:1504.03634)

- ATLAS searches for similar Higgs $\rightarrow 2X \rightarrow (q\bar{q})(q\bar{q})$ signal to CMS, but looking for X boson decays inside muon spectrometer.
- Muon spectrometer lies at 4 < r < 10 metres from beam-line. Sensitive layers are separated by *air*, (unlike CMS, which uses steel), so hadrons from X decay fly far enough to be reconstructed.
- Trigger looks for these unusual jets of particles in muon spectrometer.
 - Has much lower Et threshold than CMS!
- Require 2 reconstructed
 X decay vertices per event.

ATLAS search for LL particles decaying to displaced jets in muon spectrometer

- No events found.
- Thanks to low E_{τ} threshold trigger, can set limits for 125 GeV Higgs: BR of Higgs $\rightarrow 2X \rightarrow (q\bar{q})(q\bar{q}) < 1\%$ for $c\tau \sim 2$ metres.
- N.B. Peak sensitivity at longer decay lengths than CMS
 Tracker-based search.

Displaced jet searches reinterpretation by phenomonenologists

- Although CMS & ATLAS don't present displaced jets results in modelindependent way, the powerful limits tempted phenomenologists to reinterpret them!
- Very interesting results by Tweedie (arXiv:1503.05923) & Csaki (arXiv: 1505.00784) et al.
- e.g. For long-lived top squarks (LSP) decaying via RPV to diquarks, get limits from:
 - CMS HSCP search for cτ > 500cm.
 - CMS displaced jet
 & ATLAS displaced vertex
 (1504.05162) searches
 for cτ < 500cm.

Search for LL particles decaying to displaced leptons (CMS-PAS-EXO-16-022 + ATLAS-CONF-2016-042)

Let's look at 2 papers produced with 3/fb of 13 TeV 2015 data

- **CMS** looks for events with one displaced electron + one displaced muon, reconstructed in tracker (short decay lengths).
 - > These are *not* required to form a common vertex.
 - good idea since it broadens range of models we are sensitive to.

Search for LL particles decaying to displaced leptons (CMS-PAS-EXO-16-022 + ATLAS-CONF-2016-042)

 ATLAS looks for pairs of "lepton jets" reconstructed in muon spectrometer or calorimeter (long decay lengths).

Typical signal model: $H \rightarrow 2^*$ long-lived $\rightarrow 2(\gamma_D + invisible) \rightarrow 2(I^+I^- + invisible)$ 95% CL Limit on $\sigma \times BR(H \rightarrow 2\gamma_d + X)$ [pb] 0 0 **ATLAS** Preliminary where $\gamma_{\rm D}$ is a very light 3.4 fb⁻¹, $\sqrt{s} = 13$ TeV $\begin{array}{l} \mbox{FRVZ } 2\gamma_{d} \mbox{ model} \\ m_{H} = 125 \mbox{ GeV } \mbox{ } m_{\gamma_{c}}^{d} = 400 \mbox{ MeV} \end{array}$ (M ~ 1 GeV) "dark photon". $BR(H \rightarrow 2\gamma_{d} + X) = 100\%$ Sets limits on BR of 125 GeV Higgs ~5% for $c\tau \sim 1$ cm. $BR(H \rightarrow 2\gamma + X) = 10\%$ (N.B. γ_{D} have large Lorentz boost) expected $\pm 2\sigma$ observed limit expected limit expected $\pm 1\sigma$ 10^{2} 10 1 Dark photon $c\tau$ [mm]

Long-Lived Particles that decay within the detector volume to invisible particles (!)

Possible if the long-lived particle is charged ...

CMS disappearing (HSCP) track search (arXiv:1411.6066)

- In AMSB, $\tilde{\chi}^+ \rightarrow \tilde{\chi}^0 \pi^+$, where the $\tilde{\chi}^+$ and $\tilde{\chi}^0$ are almost mass degenerate. The $\tilde{\chi}^+$ is long-lived. Let us assume it decays somewhere inside the Tracker. The π^+ is very soft & usually undetectable.
- Trigger using ISR jet + missing Et (from $\tilde{\chi}^0$), since can't trigger on π^+ .
- Offline: $\tilde{\chi}^+$ seen as track with no hits in outer layers of the Tracker. But there are *loads* of such tracks, due to nuclear interactions!
- Rescued by additional cuts, e.g. requiring track to:
 - Have Pt > 50 GeV.
 - > Be isolated.

CMS disappearing (HSCP) track search (arXiv:1411.6066)

- After all cuts, only 2 tracks survive.
 - Good limits (although not yet presented in model-independent way ...)
- These limits extend to lower lifetime those from HSCP search (slide 9).

Long-Lived Particles with very short lifetimes

Do conventional searches tell us about LL particles ?

• What about LL particles that are so *short-lived* that they have little chance of decaying to significantly displaced fermions?

N.B. A priori, it is equally likely that a hypothetical LL particle has 0.01 cm < $c\tau$ < 0.1cm as 10 cm < $c\tau$ < 100cm!

Conventional searches can help answer this questions ...

e.g. SUSY searches assume that the LSP is stable & everything else decays instantly. But their limits remain ~valid if the LSP usually decays outside the detector ($R \gtrsim 10$ m) & everything else decays at $R \lesssim 1$ mm.

- > CMS SUSY search for $\tilde{\chi}^+ \rightarrow l^+ \upsilon \tilde{\chi}^0$ (arXiv:1405.7570) constrains short-lived $\tilde{\chi}^+ (R \leq 1 \text{ mm})$
- Ideally, long-lived exotica signal MC should be run through conventional searches to determine exactly which lifetimes they are sensitive to.

Conclusions

- Searches for LL particles are usually based on simple signatures that are sensitive to a wide range of models.
 - > Massive, stable charged particles.
 - > Missing transverse energy.
 - Displaced leptons, jets or photons.

- Some of these searches attempt to present limits in a model-independent way, though not always easy.
 - > Good to know if theorists think we succeeded !??
- Analysis & trigger techniques still maturing, with significant improvements from year to year, so expect great things to come!
 Lots of results based on 2016 data in pipeline.

BACKUP SLIDES

Search for stopped R-hadrons (HSCP) ATLAS (arXiv:1310.6584)

• If R-hadrons are very slowly moving, they lose all their energy through dE/dx, and come to a halt in the calorimeter.

log(Kinetic Energy / GeV)

- Search for R-hadrons, produced in LHC collisions, that decay seconds or years later when there is no colliding beam!
- ATLAS analysis with 8 TeV 2012 data.

Search for stopped R-hadrons (ATLAS)

- R-hadron decay (e.g., $\tilde{g} \rightarrow g \tilde{\chi}^0$) gives energy deposit in calorimeter.
- So require "jet" + E_T^{miss} at least 125 ns after last pp collision.
- Veto events with muons, to avoid background from interacting cosmics or beam-halo muons.

Cosmic background estimated using data collected before start of LHC data taking!

Search for stopped R-hadrons (ATLAS)

- No events found in 8 TeV data, so limit on gluino mass
 > 750 GeV for gluino lifetime of 1µs 1 year.
- Rarely competitive with HSCP search, but very cute ...
- Similar analysis from CMS (arXiv:1501.05603)

CMS search for long-lived particles decaying to displaced photons (2 papers: https://cds.cern.ch/record/2063495/ + https://cds.cern.ch/record/2019862/)

- In GMSB SUSY: long-lived $\tilde{\chi}^0 \rightarrow \gamma \tilde{G}$.
- 1st paper uses ECAL timing resolution (~0.37 ns) to detect late arrival of γ at ECAL (due to indirect path & due to non-relativistic $\tilde{\chi}^0$)
- 2^{nd} paper profits from large amount of material in tracker (!) to reconstruct γ conversion & hence show that γ trajectory doesn't originate at beam-line.
- Both require $E_t^{miss} > 60 \text{ GeV}$ (due to \tilde{G}).

Ian Tomalin 03/11/2016

CMS Search for long-lived particles decaying to displaced leptons Efficiency

- Decent efficiency for Tracker to reconstruct leptons produced up to 50 cm from beam-line, thanks to effort invested in displaced-track reconstruction.
- (2nd paper didn't fully exploit this, as eµ trigger as was inefficient for very displaced muons.
 Will fix in future).

RESULT:

- > 1st paper sees no candidates.
- > 2nd paper sees only a few.

CMS search for long-lived particles decaying to displaced leptons Model independent limits for e+e- or $\mu+\mu$ - final state

- Define acceptance region where efficiency "high":
 i.e. Lepton Pt > 26-40 GeV & |η| < 2 & L_{xy} < 50 cm.
- Limits on " σ *BR*acceptance" are ~ independent of model (& even lifetime)!
 - > Valid for any model where LL particle decays to (l⁺,l⁻,anything)!
 - > Can be translated to limits on σ^*BR if you know the acceptance for your model.

