Higgs-boson: from discontraction discontraction and the second se

Bill Murray Warwick University / RAL, STFC bill.murray@cern.ch

3rd November 2016

The Higgs discovery What do we know today? What might the future hold?

ience & Technology Facilities Council Rutherford Appleton Laboratory W. Murray 2

UNIVERSITY OF WARWICK

Associated

(C)

a

gluon fusion

VBF

WH

ZH

Higgs production

 The three most common modes - Others also exist: ttH, tH, bbH... Gluon fusion dominates rate ttH - Top loop (+ BSM?) Vector boson fusion/associated Also used to tag signal - Improves the purity ttH: coming soon

WARWICK

Higgs decay modes used

$\bullet H \rightarrow ZZ$

- $-ZZ \rightarrow IIII$: Golden mode
- $ZZ \rightarrow IIvv$: Good High mass - $ZZ \rightarrow IIbb$: Also high-mass

•H → WW

- WW \rightarrow lvlv: high rate,
- WW \rightarrow lvqq: highest rate $\rightarrow H \rightarrow \gamma \gamma$
 - Rare, best for low mass
- eH → ττ
 - Uses VBF, low mass
- •H → bb
 - ttH, WH, ZH: need production tag

WARWICK

2016 LHC ran pp excellently

WARWICK

Higgs cross-sections

✓~25fb⁻¹ at 7/8TeV allowed the discovery And a suit of measurements •~40fb⁻¹ at 13 TeV will go much deeper With 100fb⁻¹ expected in run 2 But so far results from ~15fb⁻¹

Cross- sections	8 TeV fb	13 TeV fb	Ratio	
ggH	21400	48500	2.3	
VBF	1600	3780	2.4	
WH	700	1370	2.0	
ZH	420	880	2.1	
ttH	133	506	3.8	
Yields	7/8 TeV	13 TeV	Total	
Yields ggH	7/8 TeV 0.5M	13 TeV 1.9M	Total 2.4M	
Yields ggH VBF	7/8 TeV 0.5M 40000	13 TeV 1.9M 150000	Total 2.4M 190000	
Yields ggH VBF WH	7/8 TeV 0.5M 40000 17000	13 TeV 1.9M 150000 55000	Total 2.4M 190000 70000	
Yields ggH VBF WH ZH	7/8 TeV 0.5M 40000 17000	13 TeV 1.9M 150000 55000 35000	Total 2.4M 190000 70000 45000	

WARWICK

Higgs measurements in a slide

Discovery in 2012 via γγ and ZZ decays
WW was soon confirmed
ττ only via ATLAS+CMS combination
Other decay modes are not proven.
Production dominated by gluon fusion
VBF also seen a 5σ in combination
Spin/parity assessed in all observed channels
Results strongly prefer 0+ over any alternative

Run 1 Higgs

 A lot of our knowledge comes from Run 1 results
 Many of the SM results are seen through the prism of ATLAS+CMS joint papers

- Mass measurement
- Coupling measurement
- I think it is significant that there is no combined spin/parity study

The Higgs mass

Measured well in both the discovery modes Results from ATLAS and CMS in ZZ and yy combined:

•The last unknown of the SM. Now known to 0.2%

Sensitivity

 Measured error over expected signal rate Cyan or brighter has error below 50%

Observed

 Observed pattern matches expected pretty well •With less bb than anticipated •and some WW excesses

WARWICK

Sigma/br factorization assumed

 Given the table of cross-sections for various process Assume one particle then production/decay factorize •Use $ggF \rightarrow H \rightarrow WW$ as a reference Good agreement with SM

Science & Technology Facilities Council Rutherford Appleton Laboratory

B^{bb}/B^{WW} slight tension

More model-dependent

LHC run 1 found proof of

- 4 decay modes (ZZ, $\gamma\gamma$,WW and $\tau\tau$) prod. assumed
- 2 production mechanisms (ggH,VBF) decay assumed

WARWICK

Interactions v mass

 Can assume the SM structure Fit interactions of t, Z, W, b, τ&μ Some are not fully established But coupling dependence on mass is clear Thats what the Higgs does!

WARWICK

Improved frameworks

 The previous slides were either rather naively experimental or based on the κ framework – scaling couplings

- These approaches do not yield consistent theories
- Plus they do not allow different interaction kinematics.
- A lot of discussion & work is going into EFTs and Pseudo-observables
 - Yellow report 4 from the LHC Higgs XS WG discusses
 - But a consensus has not yet emerged

•Experiments will continue with at least κ for run 2.

Run 2

Results emerging well

- But not 'evenly' between experiments
- Different highlights from the 2 groups

Science & Technology Facilities Council Rutherford Appleton Laboratory

W. Murray 16

 $H \rightarrow yy$

One of the discovery channels - Its back!
 6σ in CMS

•How well can background be ultimately estimated?

Production of H → **yy**

Some sensitivity to production modes
This will just keep getting better with data

 $H \rightarrow IIII$

 Signal rate extracted using also kinematic information

WARWICK

Cross-section evolution

$H \rightarrow WW$

 Final state with dileptons is OK to trigger and has high signal rate

•But large backgrounds & no peak complicate it:

- WW
- tt
- Drell-Yan
- Fake leptons
- CMS analysis for 2015 is released
 µ=0.3±0.5
 Sensitivity at Run 1 levels needs work

H → bb

- • $H \rightarrow bb$ has not been definitively observed
 - Target for run 2!
- VH is most sensitive channel
 - OI, $Z \rightarrow VV$,
 - Most sensitive Highest rate

1I, W→Iv Highest

2I, Z → II Purest

$H \rightarrow bb$

•This was low in 2012

- 2.6σ seen, 3.7σ expec.
- C/f Tevatron
 - 3σ obs, 1.9σ exp
- •Low again in 2016
 - No CMS VH result yet

•CMS do have VBF H \rightarrow bb: μ =1.3±1.1

- Sensitivity much below VH but from 2.3fb⁻¹ only
- Much improved c/f run 1 versio

ttH

•ttH not directly observed in Run 1

- Though t presence in ggH loop was inferred
- But could be affected by BSM particles
- But cross-section grows x3.9 with

energy

- And there was a small excess in rate
 So both experiments chasing it
 - ttH, $H \rightarrow bb$
 - ttH ,H \rightarrow WW, $\tau\tau$, ZZ
 - ttH, $H \rightarrow \gamma \gamma$ (already mentioned)

300000

ttH, H → bb

8 fermion state with 4 b quarks
ATLAS rates in bins of nos of jet and b-jets are below
Model uncertainties fit to data

Top modelling

•Lots of work on modeling of top quark behaviour

- Both theoretically and experimentally
- Overall we have to be impressed at how good it is
 But with 40M top this year already it is challenging
 ATLAS ttH in 2016 showed about a factor 1.5 mismodelling of event numbers in 6j4b
 - C/f Powheg+Pythia 6 (For CMS MC agreed better)
- •890 expected (80% tt+≥1b), 1285 observed
 - C/f 45 signal expected!
 - Was a factor 2 in 2015 version...
 - ttbb and ttcc cross-section prediction were removed
 - Fitted from data: ttbb 1.33±0.18 (c/f 3% error on bin 6j4b)
 - While trusting NNLO calculations of shapes & uncertainties

ttH, H → bb

Single lepton, 6j, 4b is most sensitive channel
Complex analyses try to separate s from b
Post fit results look OK, but modelling crucial

ttH, H → bb

CMS analysis is 2015 only:
ATLAS systematic nearly double statistical
With 40fb⁻¹ this will need great care

ttH, H → leptons

•Various signatures, all including b jets.

- 3 leptons
- same-sign leptons shown below
- Other (tau+l(l), IIII are weaker)
 ATLAS count, CMS fit

Fake lepton rates

Compare ATLAS and CMS ttH multilepton search

- Using SS dilepton as example
- CMS has lower lepton thresholds (10,25) c/f ATLAS (25,25)
- CMS has lower jet thresholds 4 c/f ATLAS 5
- CMS dedicated isolation BDT trained for ttH
- Result is CMS has double sig and background
 - Though s/b slightly better in ATLAS
- Each find fake leptons are 50% of background
 - Double the signal size
 - Predicted to <35 or 30-50%
 - Adjacent regions or inclusive jets
 - Constrained factor 2 in CMS fit

Science & Technology Facilities Council Rutherford Appleton Laboratory WARWICK

ttH, H → leptons results

THE UNIVERSITY OF

WAR

Comparisons of modes: 8 v 13

Th multilepton and bb modes have similar errors
While γγ improved a factor 2 on a smaller dataset
The combination is identical!

H → µµ

Most promising second-generation fermion
Genuine sensitivity to SM by end of Run 2?

Rate H → yy / 10
Use Higgs production:
ggF in high pt/low pt and barrel/central

VBF - Plot right

•µ=-2.3±2.7

With 2012: µ=-1.5±2.3
No hint yet...

WARWICK

Invisible Higgs decay

Nice CMS paper on invisible higgs
VBF, Z→II, V→qq, ggH
No sign of signal
UL on Br of 24% (23% expected)

WARWICK

Invisible Higgs decay

 •8 TeV result still dominates sensitivity
 •But 13 TeV somehow shifts observed close to expected
 •UL on Br of 24% (23% expected)

WARWICK

More exotic Higgs

 Rare decays Heavy Higgs • WW, ZZ, bb, yy Others tH → bb Charged Higgs τν, WZ •Η/Α → ττ Higgs pair production bbtt, bbWW

 $H/A \rightarrow \tau \tau$

ATLAS analysis focused on high mass
Ih and hh channels only
New high-MET channel (centre)
No serious excess observed

$H/A \rightarrow \tau \tau$ MSSM exclusions

• hMSSM stats to show sensitivity up to $2m_{_{t}}$ for all tan β

WARWICK

What comes next?

Sensitivity

 Measured error over expected signal rate Cyan or brighter has error below 50%

Sensitivity scaled 2

•25fb-1 8TeV •Plus 39 fb-1 at 13 TeV Quadruple the signal yield Assume errors half! •Improve: • bb ??

ttH yy

WARWICK

Sensitivity scaled 3

Run 2 optimistic hope: ggF and **VBF** well measured Real sensitivity in many crossmodes too

Science & Technology Facilities Council Rutherford Appleton Laboratory

W. Murray 42

WARWICK

The incomplete theory:

Mass (pre-LHC problem!)

- Without Higgs particles are massless
 Gravity
 - There is no gravity in this model
- Neutrino Mass

- Neutrinos have mass but how? We do not know
 Dark matter
- Most matter in the Universe is something unknown
 Dark energy
- An unknown force accelerates the Universe expansion
 Matter-antimatter asymetry
 - Where did the antimatter go after the big bang?
- The naturalness problem
 - I will explain this later

WARWICK

Here is an event with 2 muons

Most particles are stopped at the green calorimeter
The two muons get right to the outside
Muons are very penetrating

- They are heavy copies of electrons
 They both come from the same collision
 - Are they connected?

The end?

Yes, we found a new particle...
But why do we identify it with the Higgs boson?
And maybe the SM Higgs?

WARWICK

What have we learnt?

LHC run 1 found proof of

- 4 decay modes (ZZ,γγ,WW and ττ)
- 2 production mechanisms (ggH,VBF)

H to ZZ and H to yy

•The measured $H \rightarrow ZZ$ rate is about $10xH \rightarrow \gamma\gamma$

- After allowing for Z→II Br
- But the Z is massive, so harder to make
- So HZZ must be a powerful interaction
- •We know the Z interacts with weak charge
 - Just like the photon does with EM charge
- HZZ strength shows the H must be weak charged
 - But Z is neutral (Charge and weak charge)
 - So in $H \rightarrow ZZ$ where does the charge go?

WARWICK

H to ZZ and H to yy

•The measured $H \rightarrow ZZ$ rate is about $10xH \rightarrow \gamma\gamma$

- After allowing for Z→II Br
- But the Z is massive, so harder to make
- So HZZ must be a powerful interaction
- •We know the Z interacts with weak charge
 - Just like the photon does with EM charge
- HZZ strength shows the H must be weak charged
 - But Z is neutral (Charge and weak charge)
 - So in $H \rightarrow ZZ$ where does the charge go?
- It is really a 4-point coupling
 - One leg 'grounded' in the vacuum
- The ZZ decay needs vacuum help
 - Absorbing a (weak) charge!
- This is evidence the BEH field exists

H spin

Higgs is predicted to be scalar boson: zpin 0, parity symmetric
 Study the spin of a particle through angular correlations

- A spinless particle has no preferred direction
- A spinning paticle can spin about an axis
 Also conservation of angular momentum means the spins of the daughters add up (vectorially) to the parent
- So if daughters (WW, ZZ) decay there are correlations in this
 Spin analysis done by comparing models
- See which models fit data best.
 Spin/parity 0⁺ always best fit
 0⁻ is exclude >99% CL
- •1⁺ and 1⁻ are also strongly excluded
- MANY (~20) spin 2 models tried all excluded
- But actually no complete proof it is not spin 2.
 General acceptance that this is a spin 0 object

OK, so what?

•Well...lots

- Does it interact with matter, or only forces?
- Is it a Higgs
- Is it the Higgs
- Does it interact with mass?
- Does it explain the matter/anti-matter asymmetry?
- Does it interact with Dark Matter?
- But I stick to two questions:
 - The Brout-Englert-Higgs field
 - Naturalness

WARWICK

What about the Higgs field?

The Higgs mechanism needs the field filling space
This is neither matter nor particle: something new
Actually reminiscent of the 'luminoferous ether'

- But a fully relativistic version
- Unlike light, you turn it off and it is still there
- ~2 Higgs bosons / fm³
- •The density of the field is cosmologically ridiculous
 - It is 120 orders of magnitude larger than dark energy
 - Remember: we don't have a quantum theory of gravity
- So do we really expect you to believe its there?

• Well, there was the $H \rightarrow ZZ$ decay...

WARWICK

Measure Higgs self-interaction?

Need to produce 2 Higgs bosons

• The LHC is the only machine on earth with a chance

- They are much rarer than making one Higgs
 - And we still need to recognise them
- The best Higgs modes: γγ and ZZ → IIII have BR of 0.002 and 0.0002 respectively
 - If we want HH → (γγ)(γγ) we can make one by 2035!!
 Not enough to measure
 - So we need to try to use more abundant modes
 - e.g. $HH \rightarrow \gamma\gamma bb$ has 300 expected events
 - Tough due to backgrounds, but maybe

•This is one of the major goals for the LHC by 2035

We do need to study this new aspect of the Universe

HL-LHC

There are many physics motivations for HL-LHC

Three seem to dominate to me

- Extended searches for new particles to higher energies
- Extended searches for new particles produced more rarely
- Accurate precision measurements
 - Exemplified by Higgs couplings

WARWICK

HL-LHC Higgs couplings

- The projected precision with which Higgs boson couplings can be measured by ATLAS with 300 or 3000 fb⁻¹
- The solid bars excluded theory errors – hashed included them
- Hard to predict their size
 But 7 decays can be studied to 10-30%, and productions too
 - Sensitive to new physics

ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \left[\text{Ldt} = 300 \text{ fb}^{-1} ; \right] \text{Ldt} = 3000 \text{ fb}^{-1}$

WARWICK

What do we see at 13 TeV?

Public results only from O(3fb⁻¹) from 2015 Higgs is still there...just

Here CMS examples; ATLAS similar

WARWICK

2012

What comes next?

We have found a Higgs boson •This confirms a 'Higgs Field' filling space Unlike light, you turn it off and it persists But it is much denser than lead... 1964 This is not like matter, not like a force Breaking Newton's 1730, description It is a Higgs field, something new. Now we need to understand it LHC is working excellently At 13TeV and higher collision rate We will measure at least 7 decay modes And perhaps di-Higgs production. Great hopes of finding something else too Maybe the yy is it?

Standard Model Production Cross Section Measurements

Status: March 2015

