

Rebeca Gonzalez Suarez University Of Nebraska, Lincoln

TOP PHYSICS

UK HEP Forum: "Into the Unknown with LHC13"

Why top physics?

- The top quark is **Special**
- It is very heavy → the most massive quark, the most massive fermion, and the most massive elementary particle known (so far)

Short lived

- Decays before hadronizing
- ▶ does not form bound states → no toponium
- we get direct access to its properties via decay products

Couples strongly to Higgs

Impact on the Higgs sector

Vass [GeV]

Every precision measurement is a search

- Measurement of top properties \rightarrow SM test
 - The top mass is a <u>fundamental SM</u> property
 - It is essential for testing the SM consistency (and constrain new physics models) through precision electroweak fits
 - Plays a role on the stability of the electroweak vacuum: top radiative corrections can drive the Higgs selfcoupling towards negative values, potentially leading to an unstable vacuum

If you are not convinced yet

- The top quark is a main ingredient of many BSM scenarios
 - Rare decays, heavy resonances decaying to top, new particles produced together with top, exotic partners...
- > top is fun*! (*experimentally)
 - top decays almost always to Wb
 - Signatures with b-jets in the final state
 - Plus: leptons, neutrinos and/or light quarks
 - Using the full potential of the LHC experiments

- But no matter if you like it or not: It is **unavoidable** at the LHC
 - ▶ Background of virtually everything (measurements, searches) → need to know it very well
- > 21 years since its discovery (1995, Tevatron)
 - We already know it quite well, but we can know it even better!

Producing tops

- > Top quarks at the LHC are produced at a very high rate
- Mainly produced in ttbar pairs → strong interaction

At a lower rate: Single top quark production → EWK interaction

> Three main modes: t-channel, tW associated production, and s-channel

LHC exclusive!

σ[pb]	ttbar	t-channel	tW	s-channel
Tevatron (1.96TeV)	7.0	2.08	0.22	1.046
LHC @ 7TeV	177.3	63.89	15.74	4.29
LHC @ 8TeV	252.8	84.69	22.2	5.24

Top Factory[™]

The "top factory" - Run 1

The Run-1 of the LHC (2010-2012) delivered ~5fb⁻¹ of pp collisions at 7TeV and ~20fb⁻¹ of pp collisions at 8TeV

More the 10M ttbar pairs, about 4M single top t-channel events, 1M of tW events, and more than 200K s-channel events Many top events → Enough to establish a **very healthy top Run-1 Legacy** Large number of ATLAS+CMS combinations

Inclusive cross sections: High precision measurements in many channels, all compatible with NNLO predictions

Differential cross sections:

- probing QCD predictions
- facilitating the comparison of the data with state-of-the-art generators

- Single top: single top factory!
 - observation of the tW process
 - measurement of properties in t-channel
 - study of s-channel
 - rare SM single top (tZq, ty)

W boson helicity fractions

ATLAS+CMS Preliminary	LHC topW G	September 2016
$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{theo}}}$ from single top qua	ark production	
σ _{theo} : NLO+NNLL MSTW2008nnlo PRD83 (2011) 091503, PRD82 (20 PRD81 (2010) 054028	10) 054018,	
$\Delta \sigma_{\text{theo}}$: scale \oplus PDF		total theo
m _{top} = 172.5 GeV		$ f_{1v}V_{tb} \pm (meas) \pm (theorem V)$
t-channel:		
ATLAS 7 TeV ¹ PRD 90 (2014) 112006 (4.59 fb ⁻¹)	⊢ ∎⊢_1	$1.02 \pm 0.06 \pm 0.02$
ATLAS 8 TeV ^{1,2} Paper in preparation (20.2 fb ⁻¹)	<mark>⊨; = ; ,</mark>	$1.028 \pm 0.042 \pm 0.024$
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	L .	$1.020 \pm 0.046 \pm 0.017$
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	⊢ I	$0.979 \pm 0.045 \pm 0.016$
CMS combined 7+8 TeV JHEP 06 (2014) 090	<mark>⊢+é+-1</mark>	$0.998\ \pm 0.038\ \pm\ 0.016$
CMS 13 TeV ² paper in preparation (2.3 fb ⁻¹)	├──┼●┼──┤	$1.03 \pm 0.07 \pm 0.02$
ATLAS 13 TeV ² arXiv:1609.03920 (3.2 fb ⁻¹)	⊨ + = +1	$1.07 \pm 0.09 \pm 0.02$
Wt:		
ATLAS 7 TeV PLB 716 (2012) 142-159 (2.05 fb ⁻¹)	► + - + +	$1.03^{+0.15}_{-0.18} \pm 0.03$
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	⊢ →+ ● +→→	$1.01^{+0.16}_{-0.13}{}^{+0.03}_{-0.04}$
ATLAS 8 TeV ^{1,3} JHEP 01 (2016) 064 (20.3 fb ⁻¹)	F F F	$1.01 \pm 0.10 \pm 0.03$
CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)	F	$1.03 \pm 0.12 \pm 0.04$
LHC combined 8 TeV ^{1.3} ATLAS-CONF-2016-023, CMS-PAS-TOP-15-019	┣─┼ <mark>╤</mark> ┼╌┨	$1.02 \pm 0.08 \pm 0.04$
ATLAS 13 TeV ² ATLAS-CONF-2016-065 (3.2 fb ⁻¹)	+ + + +	1.14 ± 0.24 ± 0.04
s-channel:		
ATLAS 8 TeV ³ PLB 756 (2016) 228 (20.3 fb ⁻¹)		$0.93 \ ^{+ 0.18}_{- 0.20} \pm 0.04$
		1 including top-quark mass uncertainty 2 $\sigma_{theo}^{}$. NLO PDF4LHC11 NPPS205 (2010) 10, CPC191 (2015) 74 3 including beam energy uncertainty
0.4 0.6 0).8 1 1	.2 1.4 1.6 1

High precision regime in measurement of top properties

All consistent with the SM predictions so far

Flagship: top mass

- A variety of dedicated measurements
- Extremely precise ±0.48 GeV (0.3%)
- Original alternative methods with consistent results

ATLAS+CMS Preliminary LHCtop WG	m _{top} summary, √s = 7-8 TeV	Aug 2016		
World Comb. Mar 2014, [7] stat total uncertainty	total stat			
$m_{top} = 173.34 \pm 0.76 \ (0.36 \pm 0.67) \ GeV$	$m_{top} \pm total (stat \pm syst)$	vs Ref.		
ATLAS, I+jets (*)	$172.31 \pm 1.55 \; (0.75 \pm 1.35)$	7 TeV [1]		
ATLAS, dilepton (*)	173.09 ± 1.63 (0.64 ± 1.50)	7 TeV [2]		
CMS, I+jets	$173.49 \pm 1.06 \; (0.43 \pm 0.97)$	7 TeV [3]		
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [4]		
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [5]		
LHC comb. (Sep 2013)	173.29 \pm 0.95 (0.35 \pm 0.88)	7 TeV [6]		
World comb. (Mar 2014)	173.34 \pm 0.76 (0.36 \pm 0.67)	1.96-7 TeV [7]		
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [8]		
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]		
ATLAS, all jets	175.1±1.8 (1.4±1.2)	7 TeV [9]		
ATLAS, single top	$172.2 \pm 2.1 \ (0.7 \pm 2.0)$	8 TeV [10]		
ATLAS, dilepton	$172.99 \pm 0.81 \; (0.34 \pm 0.74)$	8 TeV [11]		
ATLAS, all jets	$173.80 \pm 1.15 \; (0.55 \pm 1.01)$	8 TeV [12]		
ATLAS comb. (June 2016)	172.84 \pm 0.70 (0.34 \pm 0.61)	7+8 TeV [11]		
CMS, I+jets	$172.35 \pm 0.51 \; (0.16 \pm 0.48)$	8 TeV [13]		
CMS, dilepton	172.82 \pm 1.23 (0.19 \pm 1.22)	8 TeV [13]		
CMS, all jets	$172.32 \pm 0.64 \; (0.25 \pm 0.59)$	8 TeV [13]		
CMS, single top	172.60 ± 1.22 (0.77 ± 0.95)	8 TeV [14]		
CMS comb. (Sep 2015) ⊢⊨⊣	172.44 \pm 0.48 (0.13 \pm 0.47)	7+8 TeV [13]		
(*) Superseded by results shown below the line	AS-CONF-2013-046 [6] ATLAS-CONF-2013-102 [1 AS-CONF-2013-077 [7] arXiv:1403.4427 [1 P12 (2012) 105 [8] Eur.Phys.J.C75 (2015) 330 [1 Phys.J.C74 (2014) 2202 [9] Eur.Phys.J.C75 (2015) 158 [1 Phys.J.C74 (2014) 2758 [10] ATLAS-CONF-2014-055	1] arXiv:1606.02179 2] ATLAS-CONF-2016-064 3] Phys.Rev.D93 (2016) 072004 4] CMS-PAS-TOP-15-001		
165 170 17	5 180	185		
m _{top} [GeV]				

\blacktriangleright Top pair (and single top quarks) produced together with a Higgs boson or a W/Z/ γ

- Insight on couplings, low cross section processes
- ▶ Observation of ttV ($\geq 5\sigma$), small ttH excess in H→WW
- Single top + Higgs studied across Higgs decay channels! (arXiv:1509.08159)
- **Catalog of BSM searches** performed during Run-1 in the top quark sector
 - No signs of new physics yet → the possibilities are still unlimited

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. †Small-radius (large-radius) jets are denoted by the letter j (J).

The "top factory" today - Run 2

- The Run-2 of the LHC started in 2015
 - 4fb⁻¹ of pp collisions delivered
- Operation continued in 2016, passing 30fb⁻¹ in September,
 - The 2016 pp run ended last week
 - ~40fb⁻¹ delivered in total
- It will go on until the end of 2018 100fb⁻¹ → The Run-2 legacy will be **exceptional** (not only for top)

New energy regime to test SM validity: 13TeV

The top cross section continues to grow

Increase of energy: good for Higgs, better for top, perfect for top and Higgs

σ[pb]	ttbar	t-channel	tW	s-channel
Tevatron (1.96TeV)	7.0	2.08	0.22	1.046
LHC @ 7TeV	177.3	63.89	15.74	4.29
LHC @ 8TeV	252.8	84.69	22.2	5.24
LHC @ 13 TeV	831.7	216.99	71.2	10.32
	x 3.3	x 2.6	x 3.2	x 2

	WW	ggH	ttH	tH
13/8 ratio	x 2	x 2.2	x 3.8	x 3.9

What are we doing with the Run-2 data?

> We will need some time to digest the full 2016 dataset

Most of the data is still unexplored!

- Stay tuned for next winter and summer conferences!
- Already many results available
 - since very early in 2015
- In fact, they are so many that I cannot show everything!
 - Overview of some of the latest Run-2 results

All the publications and preliminary results available here:

ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

INCLUSIVE CROSS SECTIONS

- Early measurements at each new energy regime
 - June 2015: Run-2 starts
 - August 2015: Measurements of the tt inclusive cross section public (<u>arXiv:1510.05302</u>)

Inclusive tt cross sections: dilepton

- Simple and robust approach
 - ▶ eµ, at least 1 b-jet → purity > 90%
 - Counting experiment, ATLAS obtains the b-tag efficiency at the same time
 - > DY and fake leptons from data (same-sign events or matrix method)
 - > Analyses limited by systematic uncertainties, related to the modelling of the top signal

$\sigma_{tt}^{NNLO+NNLL}$ =832+20-29(scale)±35 (PDF) pb

σ_{tt} =818±8(stat) ±27(syst) ± 19(lumi) pb

Inclusive tt cross sections: lepton+jets

- ATLAS and CMS part ways in the strategy
 - ► ATLAS: 1e or μ , \geq 4 jets (\geq 1 b-tagged) \rightarrow **Very early** analysis, focused on achieving high purity
 - CMS: 1e or µ, ≥ 1 jets → constraining backgrounds and signal in-situ profiting from 27x more data
 - $\sigma_{tt}^{NNLO+NNLL}$ =832+20-29(scale)±35 (PDF) pb

ATLAS-CONF-2015-049

Counting experiment

Λσ/σ≈17%

Systematic dominated

σ_{tt} =817±13(stat) ±103(syst) ± 88(lumi) pb

Events 100000000 tī+V CMS Preliminary 2.3 pb⁻¹ (13 TeV) DY lultibosor 1000000 Multijets (data) 1000000 100000 10000 1000 100 Ratio 0.8 4j,1t 4j,2t Event category 2j,0t 2i.2t 3j,1t 1i.1t 2j,1t

<u>CMS-TOP-16-006</u>

Simultaneous fit in 44 categories (lepton charge, flavour, number of jets, number of b-tags) to M_{lb} Constraining JES, b-tag, lepton uncertainties Main systematic: W+jets bkg. modelling $\Delta\sigma/\sigma \approx 3.9\%$

σ_{tt} =834.6±2.5(stat) ±22.8(syst) ±22.5(lumi) pb

Inclusive tt cross sections: fully hadronic

- Measurement performed in two different regimes:
 - resolved: low p_T top quarks
 - jets: anti-kt 0.4
 - ▶ \geq 6 jets, \geq 2 b-tagged
 - ▶ boosted: high p_T top quarks
 - jets: anti-kt 0.8
 - ▶ ≥ 2jets, both jets should contain one b-tagged sub-jet
- In both cases: fit to the top mass -different requirements and definitions

 $\sigma_{tt}^{NNLO+NNLL}$ =832+20-29(scale)±35 (PDF) pb

σ_{tt} =834±25(stat) +118-104(syst) ± 23(lumi) pb

Run-2 tt inclusive cross sections

Surprise √s in cross section summary!

The LHC delivered $26pb^{-1}$ of pp collisions at **5.02 TeV** in November 2015 $\rightarrow \sqrt{s}$ for the Heavy lons run

- tt cross section measured <u>CMS-TOP-16-015</u>
 - Useful reference for HI
- Dilepton (eµ) final state, no b-tag
 - same approach as first 13TeV measurement
- Statistically limited, Δσ/σ≈25%

Single top inclusive cross section: t-channel

- ► Among the first results at the start of the Run-2 → Single top t-channel inclusive cross section
 - September 2015
- > Fit to multivariate discriminant (NN) using different regions enriched in signal and background
- ▶ Separated by charge into top quark and antiquark, ratio -R- → potential to constrain PDFs
- Systematics limited (signal modelling)

Single top inclusive cross section: tW

- tW associated production was observed for the first time at the LHC in 2013 (arXiv:1401.2942)
- > It is the second single top mode and grows faster than any other single top production at 13TeV
- \blacktriangleright Main background for tt measurements, Higgs (H \rightarrow WW), and other searches
- ▶ Particular feature: mixes at NLO with ttbar → Process only unambiguously defined at 5FS LO
 - ► Explore 4FS definitions at full NLO of WWbb processes → Main goal for Run-2

ATLAS-CONF-2016-065

First tW result of Run-2, August 2016 BDT in two signal regions + one control region 4.5σ, Δσ/σ≈14% Syst. dominated (JES, modeling)

σ_{tW} =92 ±10(stat)+28-23(sys) pb

 $\sigma_{tW}^{NLO+NLL} = 71.7 \pm 1.8(scale) \pm 3.4$ (PDF) pb

DIFFERENTIAL MEASUREMENTS

Differential Cross Sections

- Main systematic uncertainty for many top analyses: top modelling
 - > Differential: Interface between theory calculations, MC generation, and the experiments

Several measurements public in Run-2, more to come:

- Full/fiducial, boosted/resolved, parton/particle
- Multiple channels, probing different regimes of the phase space (p_T , jet multiplicity...)
- Reconstructing the top systems or based on global event variables

Comparisons with state-of-the-art predictions

- MC generators, high order predictions, matching schemes, variation of scales and tunes, using different PDF sets
- In general, agreement with NNLO predictions and NLO generators, discriminating power between MC models and tuning parameters (work in progress ATLAS+CMS)

Differential distributions: top p_T

> Effect observed during Run-1, still present in Run-2 in differential measurements:

► The top quark p_T spectrum is softer in data than in simulation

arXiv:1610.04191

Differential measurements: boosted regime

- > The boosted regime is important, especially in the context of **new physics at the LHC**
 - ▶ high p_T (boosted) top quarks appear in many new physics scenarios
 - High boost \rightarrow collimated top decay products

> The reconstruction of boosted tops is challenging

top vs QCD boosted jets, pileup, leptons within boosted jets, b-tagging

The top p_T spectrum is measured beyond the TeV scale, same effect as for non-boosted tops

Differential measurements: Double differential

- > The start of a new differential era: **Double differential** measurements
 - Already explored in Run-1, will bloom in Run-2
- Bin events in pairs of variables:

Better constrains to the MC by disentangling effects

▶ Constraining: PDF, potentially top mass and a_s

Differential measurements: single top

- Single top t-channel cross sections in Run-2 are as large as tt in Run-1
 - t-channel differential measurement already possible with the 2015 dataset

Run-2 will allow us to fully explore single top differential distributions

2σ effect in top polarization in Run-1 (<u>arXiv:1511.02138</u>) to be followed up

PROPERTIES

Top properties: Early birds

- The time to start performing measurements of top properties in Run-2 is *NOW*
 - > Expect a wave of high precision property measurements arriving in 2017-2018
 - A couple of teasers

Top mass

Indirect measurement→ from tt cross section exploiting the m_t dependance

<u>CMS-TOP-16-006</u>

l+jets inclusive cross section result re-interpreted to measure the top quark pole mass $m_t = 172.3+2.7-2.3 \text{GeV} (\Delta m_t = 1.6\%)$

Top width

Using kinematic variables at 13TeV, dilepton final state

<u>CMS-TOP-16-019</u>

Binary hypothesis tests with different Γ_t values used to bound an SM-like top **0.6 ≤Γ_t≤ 2.5 GeV** (SM_{NLO} =1.35)

TOP PAIRS+X

top quark pairs produced with vector bosons

- > tt+ W/Z/y: **rare SM processes**, ttZ and ttW already measured in Run-2
- Coupling studies, sensitive to new physics, background of ttH and other BSM searches
 - ttZ: directly sensitive to neutral current top coupling
 - ttW: source of same-sign leptons, sensitive to new couplings
- Follow up of Run-1 results, still statistically limited
 - dilepton same-sign, 3 lepton, 4 lepton, kinematic selections (CMS uses a BDT to select ttW events)
 - simultaneous fit across several signal and control regions

 $\sigma_{ttZ} = 0.92 \pm 0.29 \text{ (stat)} \pm 0.10 \text{ (syst)} \text{ pb} - 3.9\sigma \qquad \sigma_{ttZ} = 0.70 + 0.16 - 0.15 \text{ (stat)} + 0.14 - 0.12 \text{ (syst)} \text{ pb} - 4.6\sigma \\ \sigma_{ttW} = 1.50 \pm 0.72 \text{ (stat)} \pm 0.33 \text{ (syst)} \text{ pb} - 2.2\sigma \qquad \sigma_{ttW} = 0.98 + 0.23 - 0.22 \text{ (stat)} + 0.22 - 0.18 \text{ (syst)} \text{ pb} - 3.9\sigma$

 $\sigma_{ttZ} = 0.839 (\pm 12\%) \text{ pb}$ $\sigma_{ttW} = 0.600 (\pm 13\%) \text{ pb}$

top quark pairs produced with top quark pairs (tttt)

- **Very** rare production \rightarrow SM 4t is produced 5 orders of magnitude less often than tt
 - its measurement will be useful test of analytical higher order QCD calculations
- ▶ Before that → many BSM models predict an increase of the 4t cross section
 - Particles decaying to top quarks or modified couplings
 - Massive coloured bosons, composite Higgs/top, extra dimensions, SUSY

<u>CMS-TOP-16-016</u>

I+jets and dilepton final statesMain background tt (also ttV, ttH)7 BDTs in different regions optimized individually

ATLAS-CONF-2016-020

l+jets final state several regions (jets, b-tag) Scalar sum of the jet transverse momenta used as discriminant variable

Summary

The LHC experiments, ATLAS and CMS, are continuing the legacy from CDF and DØ in top quark physics (also LHCb! <u>arXiv:1610.08142</u>)

Extremely successful first running period (Run-1) of the LHC

- Cross sections: differential, fiducial, and inclusive
- Top properties: especial focus on top mass (most precise measurement to date!)
- Single top measurements: all main channels, properties, observation of tW
- At the very start of the Run-2 in 2015 \rightarrow A set of top physics results available

Collection of results for this year's TOP conference (this is just the beginning)

- Inclusive cross section measurements, differential distributions (tt, t-channel, tW)
- First hints of properties
- First results for low cross section processes ttV, tttt (ttH)
- The dataset of 2016 contains more than 30M of top pairs per experiment

Ahead: Unlimited potential for high precision measurements, sensitivity for observation of rare processes, catalog of BSM searches in the top sector