A Rough Guide to Ruling Out CDM

Jack Richings with Carlos Frenk and Adrian Jenkins

Contents

- N-Body Simulations
- Reality
- Lensing
- Building a Simulation
- The Future

N-Body Simulations

- Start with uniformly distributed particles
- Perturb them according to your dark matter theory
- Evolve them forward in time
- Analyse the structures that form to calculate observable quantities

How to NOT Rule Out CDM

- Measure the masses of satellites in our galaxy
- Count how many are greater than a given mass
- If we don't see enough, we can rule out CDM

The Small Scale Crisis in CDM

- Missing Satellites
 Problem
- Too Big To Fail Problem
- Core Cusp Problem
- Planes of Satellites

Invisible Touches

- We want to observe objects with tiny or no stellar population
- Two promising methods
 - Gaps in stellar stream
 - Strong gravitational lensing
 distortions in Einstein
 rings

Substructure and Einstein Rings

Data

Model

Image Residual

~100

Number of observations of strong lens systems to distinguish CDM from a 7kev sterile neutrino WDM system at the five sigma level.

Simulating Massive Halos

- Need precise, unambiguous predictions to rule out CDM – requires full hydrodynamic simulation
- Huge dynamic mass range (6-7 orders of magnitude)
- Computationally extremely expensive

Baryon Destruction

Setting Up Initial Conditions Pt.1

Setting Up Initial Conditions Pt.2

Effect on Resolution

- 7 DM particles for every SPH particle
- 25 Mpc box
 - SPH mass 1.2 x 10^{5}
 - DM Mass 9.38 x 104
- Goal : Apostle level 2 resolution in DM with approximately 960³ particles

Summary

- Strong lensing allows us to probe the low end of the halo mass function.
- Upcoming observations, coupled with precise theoretical predictions can strongly constrain the nature of dark matter.
- Requisite predictions necessitate the development on new simulation techniques.

The Future

- Simulations must be analysed using ray-tracing codes to produce realistic mock obsrevations.
- Halos should also be simulated using alternative dark matter models to account for unexpected changes in baryon effects.