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Introduction

Introduction

@ Dark Matter (DM) is well documented on galactic and cosmological
scales

Direct Detection of particle DM remains elusive and/or controversial
Where else can we look?

Our understanding of the Sun has discrepancies where DM may
be a solution
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Sound Speed Profile

Best measurements of the solar interior are from helioseismology, the study
of pressure wave propagation in the Sun
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Vanilla Dark Matter

Dark matter is a candidate solution

o Particles get trapped in a ‘halo’

around the sun oo SL: m, =5 GeV, 0y = 1075 em?

@ Collisions with nuclei can

transfer energy efficiently 0.005
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Vanilla Dark Matter

Dark matter is a candidate solution
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Solar Dark Matter

Vanilla Dark Matter

Dark matter is a candidate solution

o Particles get trapped in a ‘halo’
around the sun

@ Collisions with nuclei can
transfer energy efficiently
However

o Early attempts considered
vanilla constant-cross section
DM

@ Tendency to over-correct in the

SI: my, =5 GeV, gy =107% cm?
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Solar Dark Matter

Momentum and Velocity dependence

@ Vincent, Serenelli & Scott oS
(2015) investigated g and v
dependent cross sections
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Solar Dark Matter

Motivation for dipolar dark matter

Electromagnetic dipole dark matter has

momentum and velocity dependent cross v

sections

@ Standard Model analogies:

Protons, neutrons & electrons have W+
magnetic dipole moments -
Neutrons are neutral charge, but are /
composite particles 4
Electrons are point particles with
dipole moments
Even neutrinos are predicted to have
magnetic dipoles due to loop
corrections
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Types of dipoles

We consider 3 types of dipoles:

@ Electric dipole
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L e |
Types of dipoles

We consider 3 types of dipoles:

@ Electric dipole

H= —DE-& (3)
@ Magnetic dipole .

H=—uB-& (4)
@ Anapole

H= —%f & (5)
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Dipolar Dark Matter

Anapoles

@ Anapoles are an independent
term in a multipole expansion

Image courtesy of Wikimedia commons
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Dipolar Dark Matter

Anapoles

@ Anapoles are an independent
term in a multipole expansion

@ A direct consequence of parity
violation of the weak force

@ Coupling of spin to solenoidal B,
current =
@ Also called a toroidal moment J

@ Measured in cesium atoms in

1997 Image courtesy of Wikimedia commons

Ben Geytenbeek (University of Cambridge) Dipole Dark Matter in the Sun

YTF9

9 /27


https://commons.wikimedia.org/wiki/File:Solenoid_currents_inducing_a_toroidal_magnetic_moment.tif

Dipolar Dark Matter

Dipole moment cross sections

Electric Dipole Moment

do  Z%e? ’
— 6
9 " ang? V2 \ Fe(a®)| (6)
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Dipolar Dark Matter

Dipole moment cross sections

Electric Dipole Moment
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Dipolar Dark Matter

Dipole moment cross sections
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Implementing Dipole Moment Dark Matter in the Sun

Framing Questions

@ How much DM is in the Sun?

Solve differential equation

dN
— = C(6) —2A(t) — E(1) (9)

How does it modify the structure of the Sun?
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Implementing Dipole Moment Dark Matter in the Sun

Framing Questions

@ How much DM is in the Sun?
e Solve differential equation

dN

o = C(t) = 2A(t) - E(1) (9)

@ How does it modify the structure of the Sun?
o Construct formalism for energy transport
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Capture

@ Dark Matter in galactic halo may collide with solar nuclei

e If DM velocity w(r) is less than escape velocity vesc(r, t), particle
becomes gravitationally bound

o Calculating capture rate reduced to kinematics

c:—zm/f '/.duf(u)w(r)Q(W) (10)

u

for -
max da-l

Q(w) = w(r))  ni(r,t) /E | dERdER (11)

i

@ There exists a maximum capture rate, independent of o

Cmux - nmx(f(u)-, R ’ M) (12)
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o Dark Matter in galactic halo may collide with solar nuclei

o If DM velocity w(r) is less than escape velocity vesc(r, t), particle
becomes gravitationally bound

@ Calculating capture rate reduced to kinematics

C—ar /0 " [ W) (ra(w) (10)

u

for

Enex o,
Q(W)_W(r)zn,-(r,t)/E_ jEl;dER (11)

@ There exists a maximum capture rate, independent of o
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Capture

Capture Rate for SI

Capture Rate for ED
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Implementing Dipole Moment Dark Matter in the Sun

Annihilation

@ DM population decreases via x + X — 7y + v or similar
Looking to maximize DM population
Naive assumption: A(t) ~0
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Implementing Dipole Moment Dark Matter in the Sun

Annihilation

@ DM population decreases via x + X — 7y + v or similar
@ Looking to maximize DM population
e Naive assumption: A(t) ~0

e asymmetric Dark Matter

e no self-conjugate Dark Matter
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Evaporation

o If DM velocity w(t) > vesc(r, t), particle may longer be gravitationally
bound

Non-trivial calculation
Effect most significant if m, ~ my
Naive assumption: E(t) ~0

Further analysis necessary to confirm or reject assumption, but treat
all low mass results with caution
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Energy Transport

@ Two mechanisms for heat transport, regime depends on mean free
path [/, and some scale height ry:
ly < ry: Local Thermal Equilibrium - increasing o decreases energy
transport
Iy > r,: Knusden Transport (long range) - increasing o increases
energy tranport

Possible to calculate energy transport for a given model, but depends

on functional form of j{;@

Separate calculation for each dipole moment model
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transport

o l, > r,: Knusden Transport (long range) - increasing o increases
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Energy Transport

Energy Transported for SI ) Energy Transported for ED
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Implementing Dipole Moment Dark Matter in the Sun

Simulations

@ Perform simulations across a window in mass/dipole moment
parameter space

@ Numerically evolve a protostar to the Solar Age 7., = 4.57 Gyr using
DarkStec code

@ Adjust input parameters to fit to present-day solar observables L,
Rs and (Z/X)q

e Compare against simulations without DM and vanilla DM (spin
independent)

@ Some simulations do not converge to a solution
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Sound Speed Profile
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Neutrino Fluxes: Be’

Be' neutrinos for SI Be' neutrinos for ED
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Neutrino Fluxes: B®

B® neutrinos for SI

B neutrinos for ED
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esults

Convective Zone Radius
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Small Frequency Separations
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Total 2 fit
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Total p-values

Model m, | Coupling Protal
no DM - - < 10710
Sl(og) |4 |5x107%°cm? |0.04
ED(D) |3 [3x1071 e—cm |0.21
MD (uy) | 3 | 9% 107% pp 0.05
AN (&) |3 [1x10°GeV? | 045
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Conclusions

Direct Detection Bounds

@ In isolation the results appear promising

@ However, limits from direct detection rule out the required values by
several orders of magnitude

@ For example, for the anapole model

solution for the Sun

~ O(107) (13)

direct detection bound

@ The combined picture does not stack up
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a unique solution to the Solar Abundance and Dark Matter Problems
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Conclusions

Conclusions

@ It appears unlikely that electromagnetic dipole moments alone provide
a unique solution to the Solar Abundance and Dark Matter Problems

@ Lower mass DM may work, but requires implementation of
evaporation calculation

@ The Sun is an interesting tool to verify DM models, but not exclude
them
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Further Reading

@ This work: Geytenbeek et. al. (2016) Effect of electromagnetic dipole

dark matter on energy transport in the solar interior
arXiv:1610.06737

e Momentum dependent dark matter in the Sun: Vincent et. al. (2016)
Updated constraints on velocity and momentum-dependent
asymmetric dark matter JCAP11(2016)007 arXiv:1605.06502

@ Electric and Magnetic Dipole Moments: Massé et. al. (2009) Dipolar
Dark Matter Phys. Rev. D 80:036009 arXiv:0906.1979

e Magnetic Dipole and Anapole Moments: Del Nobile et. al. (2014)
Direct detection of light anapole and magnetic dipole DM
JCAP06(2014)002 arXiv:1401.4508
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