Precision neutrino experiments versus the Littlest Seesaw

Nick Prouse

based on arXiv:1611.01999 with Steve King (Southampton), Silvia Pascoli (Durham), Peter Ballett (Durham), Tse-Chun Wang (Durham)

Young Theorists Forum, Durham Wednesday, 11th January 2017

What we (don't) know about neutrinos

Knowns

- ► There are at least three generations
- Only left-handed neutrinos have been observed

Unknowns

- Are there right handed or sterile neutrinos?
- Are neutrinos Dirac or Majorana particles?

What we (don't) know about neutrinos

Knowns

- There are at least three generations
- Only left-handed neutrinos have been observed
- Neutrino flavours oscillate
 - ► Flavour and mass eigenstates are not the same
 - At least two non-zero masses
 - All three masses are different

Unknowns

- Are there right handed or sterile neutrinos?
- Are neutrinos Dirac or Majorana particles?
- What is the origin of neutrino mass?
- What is the absolute scale of neutrino masses?
- ▶ Do neutrino oscillations violate CP? $(\delta_{CP} \neq 0, \pi)$

What we (don't) know about neutrinos

Knowns

- ► There are at least three generations
- Only left-handed neutrinos have been observed
- Neutrino flavours oscillate
 - Flavour and mass eigenstates are not the same
 - At least two non-zero masses
 - All three masses are different
- ► Two mass-squared differences have been measured
- ► Three oscillation angles have been measured

Unknowns

- Are there right handed or sterile neutrinos?
- Are neutrinos Dirac or Majorana particles?
- What is the origin of neutrino mass?
- What is the absolute scale of neutrino masses?
- ▶ Do neutrino oscillations violate CP? $(\delta_{CP} \neq 0, \pi)$
- Mhat is the ordering of the neutrino masses? (sign of Δm_{31}^2)
- ▶ What is the octant of the atmospheric mixing angle? $(\theta_{23} > 45^{\circ})$ or $\theta_{23} < 45^{\circ})$

Experiments measure oscillation probabilities:
$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{i=1}^{3} U_{\alpha i}^{*} U_{\beta i} e^{-i \frac{L m_{i}^{2}}{2E_{\nu}}} \right|^{2}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

$$c_{ij} = \cos \theta_{ij}$$

$$s_{ij} = \cos \theta_{ij}$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

Experiments measure oscillation probabilities:
$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{i=1}^{3} U_{\alpha i}^{*} U_{\beta i} e^{-i \frac{L m_{i}^{2}}{2E_{\nu}}} \right|^{2}$$

Atmospheric and accelerator experiments

$$u_{\mu} \rightarrow \nu_{\mu}$$
 $\sin^2 \theta_{23} = 0.440^{+0.023}_{-0.019} \text{ or } 0.584^{+0.018}_{-0.022}$
 $|\Delta m_{32}^2| = 2.451^{+0.039}_{-0.038} \times 10^{-3} \text{eV}^2$

$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{22} e^{i\delta}CP & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{3}} \end{pmatrix}$

Solar and reactor experiments $\nu_e \rightarrow \nu_e$

$$\sin^2 \theta_{12} = 0.308^{+0.013}_{-0.012}$$

 $\Delta m_{21}^2 = 7.49^{+0.19}_{-0.17} \times 10^{-5} \text{eV}^2$

$$\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

$$c_{ij} = \cos \theta_{ij}$$

$$s_{ij} = \cos \theta_{ij}$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

data from NuFIT 2.2 (2016)

Experiments measure oscillation probabilities:
$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{i=1}^{3} U_{\alpha i}^{*} U_{\beta i} e^{-i \frac{L m_{i}^{2}}{2E_{\nu}}} \right|^{2}$$

Atmospheric and accelerator experiments

$$u_{\mu} \rightarrow \nu_{\mu}$$
 $\sin^2 \theta_{23} = 0.440^{+0.023}_{-0.019} \text{ or } 0.584^{+0.018}_{-0.022}$
 $|\Delta m_{32}^2| = 2.451^{+0.039}_{-0.038} \times 10^{-3} \text{eV}^2$

Solar and reactor experiments $\nu_e \rightarrow \nu_e$

$$\sin^2 \theta_{12} = 0.308^{+0.013}_{-0.012}$$

 $\Delta m^2_{21} = 7.49^{+0.19}_{-0.17} \times 10^{-5} \text{eV}^2$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

Reactor and accelerator experiments

$$\nu_{\mu} \to \nu_{e}, \ \nu_{e} \to \nu_{e}$$

$$\sin^{2}\theta_{13} = 0.02163^{+0.00074}_{-0.00074}$$

$$\delta_{CP} \sim -\pi/2 ?$$

data from NuFIT 2.2 (2016)

 $c_{ij} = \cos \theta_{ij}$

 $s_{ij} = \cos \theta_{ij}$ $\Delta m_{ij}^2 = m_i^2 - m_i^2$

Experiments measure oscillation probabilities:
$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{i=1}^{3} U_{\alpha i}^{*} U_{\beta i} e^{-i \frac{L m_{i}^{2}}{2E_{\nu}}} \right|^{2}$$

Atmospheric and accelerator experiments

$$\begin{split} \nu_{\mu} &\rightarrow \nu_{\mu} \\ \sin^2\theta_{23} = & 0.440^{+0.023}_{-0.019} \text{ or } 0.584^{+0.018}_{-0.022} \\ |\Delta m^2_{32}| = & 2.451^{+0.039}_{-0.038} \times 10^{-3} \text{eV}^2 \end{split}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

Reactor and accelerator experiments Majorana phases not

$$\nu_{\mu} \to \nu_{e}, \ \nu_{e} \to \nu_{e}$$

$$\sin^{2}\theta_{13} = 0.02163^{+0.00074}_{-0.00074}$$

$$\delta_{CP} \sim -\pi/2 ?$$

Solar and reactor experiments $\nu_e \rightarrow \nu_e$

$$\sin^2 \theta_{12} = 0.308^{+0.013}_{-0.012}$$
$$\Delta m^2_{21} = 7.49^{+0.19}_{-0.17} \times 10^{-5} \text{eV}^2$$

$$\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\
0 & 0 & e^{i\frac{\alpha_{31}}{2}}
\end{pmatrix}$$

measurable with oscillation experiments

data from NuFIT 2.2 (2016) ▲御 ▶ ∢ 臣 ▶ ∢ 臣 ▶ 至 | 臣 ● の Q (へ

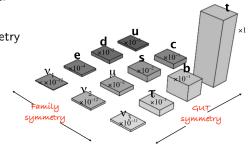
 $c_{ij} = \cos \theta_{ij}$

Family symmetries and the seesaw mechanism

- Many viable models to explain neutrino mass and mixing
- Common features include seesaw mechanism and family symmetries

Family symmetries and the seesaw mechanism

- Many viable models to explain neutrino mass and mixing
- Common features include seesaw mechanism and family symmetries
- (Type I) Seesaw mechanism
 - Right handed neutrino for each left-handed neutrino mass
 - ightharpoonup Dirac mass terms m_D at electroweak scale
 - lacktriangle Majorana mass term M_R at grand unification scale
 - $\qquad \qquad \bullet \quad \left(\bar{\nu}_L \quad \bar{\nu}_R^c \right) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$
 - \blacktriangleright Diagonalising gives very small left handed neutrino mass $m_L^\nu \approx -m_D M_R^{-1} m_D^T$


Family symmetries and the seesaw mechanism

- Many viable models to explain neutrino mass and mixing
- Common features include seesaw mechanism and family symmetries
- ► (Type I) Seesaw mechanism
 - Right handed neutrino for each left-handed neutrino mass
 - ightharpoonup Dirac mass terms m_D at electroweak scale
 - lacktriangle Majorana mass term M_R at grand unification scale

$$\qquad \qquad \bullet \quad \left(\bar{\nu}_L \quad \bar{\nu}_R^c\right) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

▶ Diagonalising gives very small let $m_L^{\nu} \approx -m_D M_B^{-1} m_D^T$

- Discrete non-abelian family symmetry
 - Provides explanation of flavour structure of SM
 - Unifies fermions within each family
 - Places constraints on mixing parameters

Littlest Seesaw model

The Littlest Seesaw (LS) model provides a physically viable seesaw model with the fewest free parameters [arXiv:1512.07531]

- Based on sequential dominance with 2 right handed neutrinos
 - Dominant RH neutrino gives atmospheric neutrino mass
 - Subdominant RH neutrino gives solar neutrino mass

Littlest Seesaw model

The Littlest Seesaw (LS) model provides a physically viable seesaw model with the fewest free parameters [arXiv:1512.07531]

- Based on sequential dominance with 2 right handed neutrinos
 - Dominant RH neutrino gives atmospheric neutrino mass
 - ► Subdominant RH neutrino gives solar neutrino mass
- Constrained sequential dominance
 - Family symmetry provides constraints on LH neutrino mass matrix
 - ightharpoonup LSA mass matrix from S_4 or A_4 [arXiv:1304.6264, arXiv:1512.07531]

$$m_{\mathsf{LSA}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix}$$

▶ LSB mass matrix from $S_4 \times U(1)$ [arXiv:1607.05276]

$$m_{\text{LSA}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9 \end{pmatrix}$$

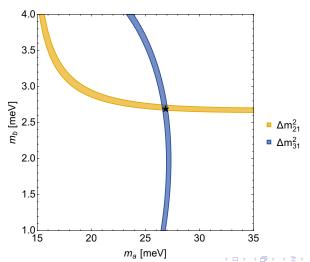
Littlest Seesaw model

The Littlest Seesaw (LS) model provides a physically viable seesaw model with the fewest free parameters [arXiv:1512.07531]

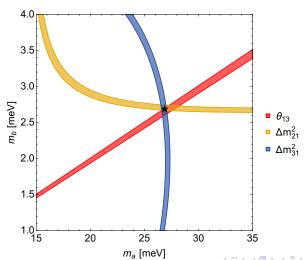
- ▶ Based on sequential dominance with 2 right handed neutrinos
 - Dominant RH neutrino gives atmospheric neutrino mass
 - ▶ Subdominant RH neutrino gives solar neutrino mass
- Constrained sequential dominance
 - Family symmetry provides constraints on LH neutrino mass matrix
 - ▶ LSA mass matrix from S_4 or A_4 [arXiv:1304.6264, arXiv:1512.07531]

$$m_{\mathsf{LSA}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix}$$

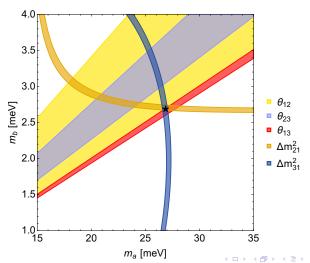
▶ LSB mass matrix from $S_4 \times U(1)$ [arXiv:1607.05276]


$$m_{\rm LSA}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9 \end{pmatrix}$$

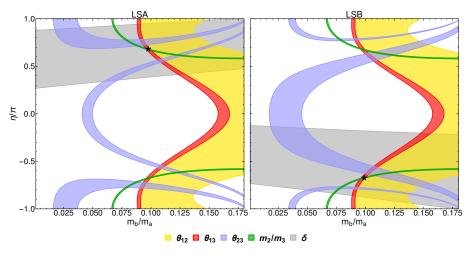
- $lacktriangleright e^{i\eta}$ can also be fixed to a cube root of unity with Z_3 symmetries
- Diagonalising mass matrix gives LH neutrino masses and mixing matrix


Testing the LS models with existing data

Fixing η to $\eta=2\pi/3$ successfully reproduces mixing angles and masses Allowed regions in m_a-m_b plane correspond to experimental measurements


Testing the LS models with existing data

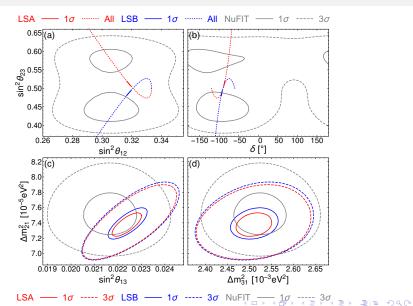
Fixing η to $\eta=2\pi/3$ successfully reproduces mixing angles and masses Allowed regions in m_a-m_b plane correspond to experimental measurements


Testing the LS models with existing data

Fixing η to $\eta=2\pi/3$ successfully reproduces mixing angles and masses Allowed regions in m_a-m_b plane correspond to experimental measurements

Testing the LS model with existing data

With η free, dimensionless parameters depend only on m_b/m_a and η



Fitting LS models to global data

Fit LSA and LSB models to global oscillation data

	LSA		LSB		NuFIT 2.2
	η free	η fixed	η free	η fixed	global fit
m_a [meV]	27.22	26.78	27.14	26.77	
m_b [meV]	2.653	2.678	2.658	2.681	
η [rad]	0.680π	$2\pi/3$	-0.678π	$-2\pi/3$	
θ_{12} [°]	34.37	34.34	34.36	34.33	$33.72^{+0.79}_{-0.76}$
θ_{13} [°]	8.45	8.58	8.48	8.59	$8.46^{+0.14}_{-0.15}$
$\theta_{23} \ [^{\circ}]$	45.01	45.69	44.87	44.30	$41.5^{+1.3}_{-1.1}$
δ [$^{\circ}$]	-89.9	-87.0	-90.6	-93.1	-71^{+38}_{-51}
$\Delta m_{21}^2 \ [10^{-5} \text{eV}^2]$	7.499	7.362	7.482	7.379	$7.49_{-0.17}^{+0.19}$
$\Delta m_{31}^{2} \left[10^{-3} \text{eV}^{2} \right]$	2.505	2.515	2.505	2.515	$2.526_{-0.037}^{+0.039}$
$\Delta\chi^2/{\sf d.o.f}$	4.7 / 3	6.4 / 4	4.5 / 3	5.1 / 4	<u> </u>

Testing the LS model with existing data

Future oscillation experiments

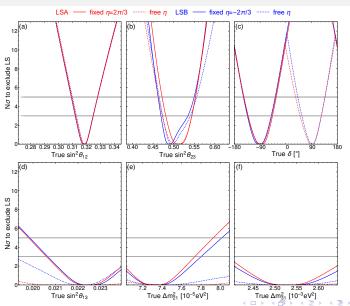
Use GLoBES package to simulate future experiments

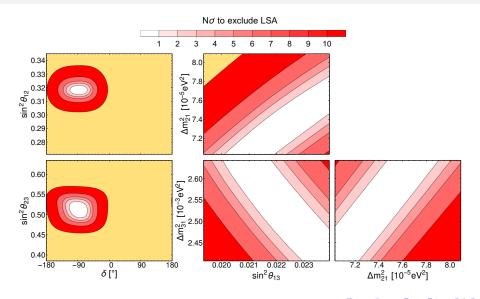
DUNE

- Long baseline accelerator experiment
- δ_{CP} precision of 10° to 20°
- $ightharpoonup \sin^2 \theta_{23}$ at 1 to 3%
- $ightharpoonup \Delta m^2_{32}$ at 0.4%

Daya Bay

- ► Short baseline reactor experiment
- ▶ $\sin^2 \theta_{13}$ at 3%


Hyper-Kamiokande


- Long baseline accelerator experiment
- δ_{CP} precision of 7° to 18°
- $\sin^2 \theta_{23}$ at 1 to 3%
- $\blacktriangleright \ |\Delta m^2_{32}|$ at 0.6%

JUNO & RENO-50

- Medium baseline reactor experiments
- $ightharpoonup \sin^2 \theta_{12}$ at 0.5%
- Δm^2_{21} at 0.5%

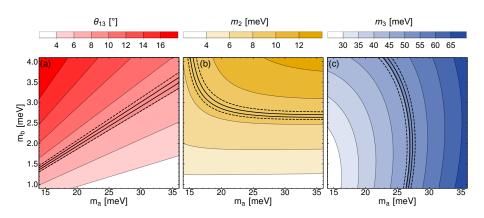
Fit 10 years' simulated data to standard mixing and to LS models to get sensitivity

12 / 13

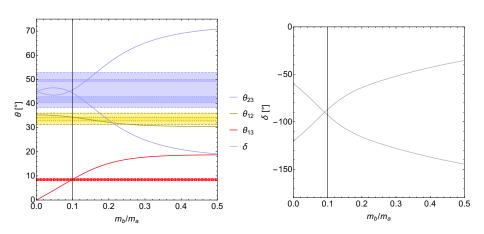
- Neutrino oscillation physics now entering precision era with measurements on all parameters
- Many models exist to explain neutrino masses and mixing

- Neutrino oscillation physics now entering precision era with measurements on all parameters
- Many models exist to explain neutrino masses and mixing
- Constraints from family symmetries give testable predictions
- Littlest seesaw provides a highly predictive model capable of reproducing existing measurements and predicting all neutrino masses and mixing parameters
- ▶ Future experiments DUNE / Hyper-K and JUNO's measurements of δ , θ_{23} θ_{12} will give strong test of LS model
- ▶ Combining measurements of θ_{13} , Δm^2_{31} , Δm^2_{31} could also exclude LS

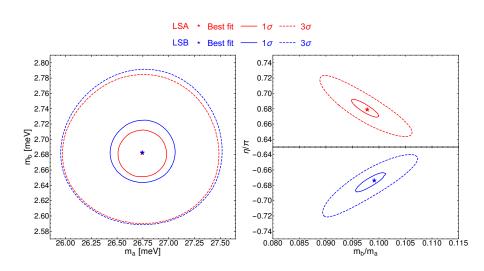
- Neutrino oscillation physics now entering precision era with measurements on all parameters
- Many models exist to explain neutrino masses and mixing
- Constraints from family symmetries give testable predictions
- Littlest seesaw provides a highly predictive model capable of reproducing existing measurements and predicting all neutrino masses and mixing parameters
- ▶ Future experiments DUNE / Hyper-K and JUNO's measurements of δ , θ_{23} θ_{12} will give strong test of LS model
- ▶ Combining measurements of θ_{13} , Δm_{31}^2 , Δm_{31}^2 could also exclude LS
- ▶ Similar procedure can be applied to other predictive models of neutrino mass
- Distinguishing these models experimentally important step in understanding the flavour structure of the Standard Model

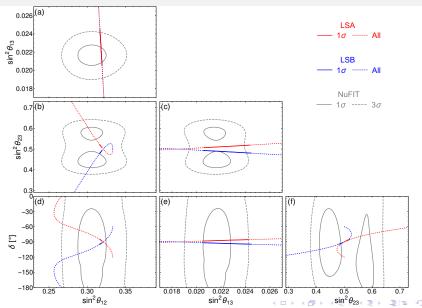

- Neutrino oscillation physics now entering precision era with measurements on all parameters
- Many models exist to explain neutrino masses and mixing
- Constraints from family symmetries give testable predictions
- Littlest seesaw provides a highly predictive model capable of reproducing existing measurements and predicting all neutrino masses and mixing parameters
- ▶ Future experiments DUNE / Hyper-K and JUNO's measurements of δ , θ_{23} θ_{12} will give strong test of LS model
- lacktriangle Combining measurements of $heta_{13}$, Δm^2_{31} , Δm^2_{31} could also exclude LS
- ▶ Similar procedure can be applied to other predictive models of neutrino mass
- Distinguishing these models experimentally important step in understanding the flavour structure of the Standard Model

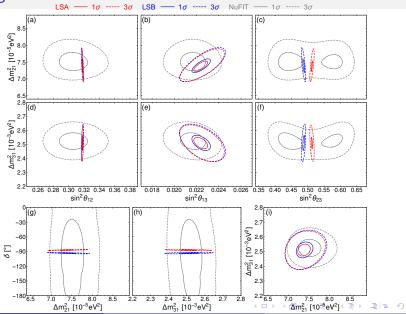
Thank you for your attention!

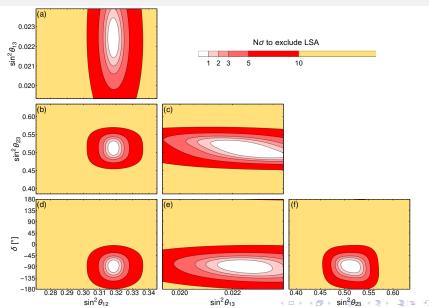


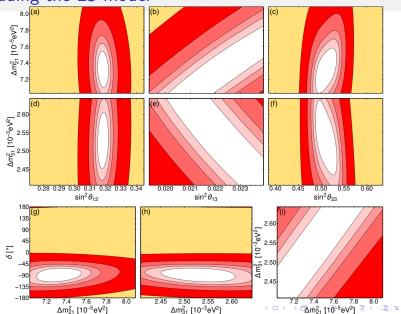
Backup Slides

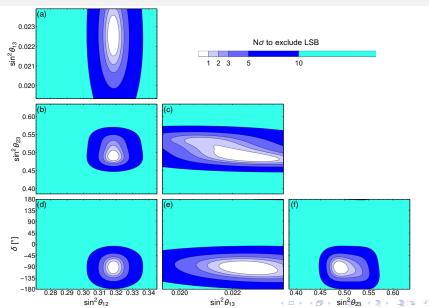

Predictions of LS model

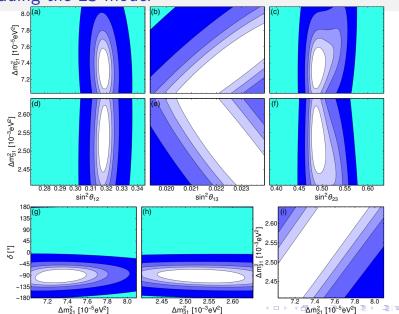

Predictions of LS model


Fitting data to LS model




Fitting data to LS model




Fitting data to LS model

