SUSY:

INTERPRETATION CHALLENGES

Young Theorists Forum @ Durham

Jesse Liu University of Oxford 12 January 2017

Based on **Alan Barr & JL** arXiv:1605.09502 | arXiv:1608.05379

FOCUS OF TALK

LHC: testing relativity + quantum theory Interpretation: what do the searches mean? Soft physics: experimental challenges

DARKNESS OF UNKNOWN

Where do we start searching?

SUSY pMSSM & Soft | 12 Jan 2017 | Jesse Liu | 6

LAMPPOSTS EXIST: SEARCH THERE FIRST Relativity + quantum underpins supersymmetry

Sterile neutrinos ADMX HPS Dark photons Minimality D > 4AMS SHiP Unification Axions 7' bosons EHT LISA Naturalness **R**-parity violation LSST APEX Light gluino, stops Composite Higgs IAXO DUNE WIMP dark matter **Beyond the lamppost Beyond the lamppost** Jets + MET searches theories? experiments?

NEW PHYSICS AT WEAK SCALE IS

theoretically motivated + experimentally observable

Easy: how do we read SUSY limits?

Easy: how do we read SUSY limits?

^{*} Aka 'compressed', 'squashed', 'squeezed', small mass-splittings

Tricky: how do we interpret SUSY limits?

"

What do these constraints mean for my favourite BSM model?

- anxious model builder friend

66

Surely it's unfair to compare analyses using different simplified models?

- wise collider physics friend

66

How well do these simplified models probe realistic MSSM scenarios?

- natural MSSM advocate friend

The ATLAS p(henomenological)MSSM

ATLAS [arXiv:1508.06608], Berger et al [arXiv:0812.0980], Cahill-Rowley et al [arXiv:1206.4321, arXiv:1211.1981, arXiv:1407.4130]

Scan 19-parameter MSSM

Vanilla assumptions: R-parity conserved, neutralino LSP, flavour & CP violation only in CKM,...

Impact of 28 SUSY searches on pMSSM19

28 ATLAS SUSY searches applied in following order: Run 1 | electroweak, stops & sbottoms, squarks & gluinos Run 2 | squarks & gluinos.

Fractions normalised to 310.3k pre-selected points with long-lived gluinos, squarks & sleptons removed. Raw exclusion info for this is publicly available at Run 1 HEPData [ATLAS] and Run 2 up to 3.2/fb [Barr & Liu]. Please download and use Adobe Reader to view animation.

Gluino-LSP plane

A Barr & JL [arXiv:1605.09502] Exclusion info: www-pnp.physics.ox.ac.uk/~jesseliu/pmssm

Scatter 28k points excluded by six 13 TeV searches

A Barr & JL [arXiv:1608.05379]

Distinct regions of sensitivity identified

Project into direct detection cross-section vs DM mass

THE SEARCHLIGHT IS SHIFTING from spectacular to subtle discoveries

Opportunities & challenges for **soft, rare, quirky signals**

Soft stuff Particle identification Trigger thresholds

Rare SUSY Colourless sparticles

Dark sector

Quirky creatures

Displaced difficulties Long-lived exotica

> LUMINOSITY PRIORITY

Scalar leptons

Scenario: scalar leptons with plentiful phase space

Problem: squished phase space hampers detectability

Solution: boost SUSY system off jet

New triggers enable new searches

SUMMARY

LHC: testing relativity + quantum theory

Need for new data era SUSY remains key search lamppost

Interpretation: what do the searches mean?

Phenomenological (realistic) 19-parameter MSSM Explore distinct regions of sensitivity

Soft physics: experimental challenges

Exploit luminosity for tough rare+soft SUSY New detector triggers needed

EXTRAS

Spins of massless particles allowed by* RELATIVITY & QUANTUM THEORY

Weinberg 1964, Grisaru & Pendleton 1977

Higgs et al.

Matter

Gauge bosons [Unseen]

Gravity

Spacetime symmetries & unitarity fix sub-Planckian interactions to be those of the Standard Model & General Relativity

Strong SUSY searches probe rich pMSSM dark sector

Signature can also illuminate Higgsinos

See backup 18 for Higgsino cross-sections, 30-31 for hep-ph studies

Case study: take points where SS/3L is most sensitive

Simplified models considered by ATLAS SS/3L

One signal region per simplified model

ATLAS SS/3L Paper [arXiv:1602.09058]

pMSSM points where SS/3L is most sensitive

Almost all probed by signal region targeting this model

'2-step' also used by OL 7-10 jets analysis

'Gtt' also used by Multi-b analysis

Interesting simplified models \rightarrow pMSSM mapping

pMSSM scenario different but not far off

pMSSM points prefer

- less correlated to neutralino2
- light squark production
- wino LSP: (other analyses target larger chargino-LSP gap)

(d) Model 11733067 (SS/3L).

Squark-slepton-wino spectrum Common to points where SS/3L is most sensitive

Result: RJR improves squished sensitivity by ~80 GeV

RJR used for 1st time in ICHEP 0L 2-6 jets search

See backup 22 for ICHEP 2016 stop limits

Innovation: recursive jigsaw reconstruction (RJR)

RJR used for 1st time in ICHEP 0L 2-6 jets search

13 TeV simulation & interpretation

58.1% 181.8k points survive run 1 constraints**	40.9% EXCLUDED BY 22 ATLAS RUN 1 SEARCHES**		1% long lived***
V			_
Particle & fast detector simulation*	Event selection MadAnalysis 5		
MadGraph 5 + Pythia 6 + Delphes 3			
All object isolation done in Delphes (main difference from standard MadAnalysis)			
	ATLAS search [13 TeV, 3.2/fb]	Reference	Signal regions
	2-6 jets	1605.03814	7
Further details in	7-10 jets	1602.06194	15
A Barr & JL arXiv:1605.09502	Monojet	1604.07773	13
*We simulated the 71.4% of the 181.8k	Multi-b	1605.09318	8
with σ(tot) > 5 fb, else model deemed viable **Run 1 exclusion & points publically	1-lepton	1605.04285	6
available [ATLAS arXiv:1508.06608]	SS/3L	1602.09058	4
***Long-lived gluinos, squarks, sleptons ($c\tau > 1mm$) omitted from our study	All	-	40

SUSY pMSSM & Soft | 12 Jan 2017 | Jesse Liu | 34