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Entanglement entropy

Far from equilibrium systems are poorly understood compared
to those at or close to equilibrium, but are important in many
branches of physics.

We will be using entanglement entropy (EE) to characterise
non-equilibrium systems.

Definition of entanglement entropy:

Split the Hilbert space of a quantum system into subspace A
and its complement B. Reduced density matrix:

ρA =
∑
|ψ〉∈B

〈ψ|ρ|ψ〉

EE = von Neumann entropy of reduced density matrix

SEE = −Tr ρA log ρA
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Entanglement entropy

For a QFT, it is natural to divide the Hilbert space by dividing a
spatial slice of the manifold on which the QFT lives.

We make two choices of A:
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The first law of entanglement

Modular Hamiltonian H: ρA ≡ e−H

For small perturbations of the state of a QFT:

δSEE = δ〈H〉 “First law of entanglement” D. D. Blanco, H. Casini, L. Hung,
R. C. Myers, 1305.3182 [hep-th]

Sometimes the change in the modular Hamiltonian is
proportional to the change in energy

δSEE = δE
Tent

J. Bhattacharya, M. Nozaki, T. Takayanagi,
T. Ugajin, 1212.1164 [hep-th]

Comparing different states in different theories, the first law
may not hold. We will study certain time-dependent
perturbations to Hamiltonians.

Entanglement entropy is difficult to calculate in QFT, so we use
holography.



Entanglement entropy in holography

In AdS/CFT: a gravity theory on AdS⇔ CFT on its boundary

EE in the CFT is proportional to the area of an extremal surface
in the AdS space.

BoundaryA∂A ∂A

Into the bulk
W

Time-independent holographic EE: S. Ryu, T. Takayanagi, hep-th/0603001
S. Ryu, T. Takayanagi, hep-th/0605073

Time-dependent holographic EE: V. E. Hubeny, M. Rangamani, T. Takayanagi, 0705.0016 [hep-th]
X. Dong, A. Lewkoycz, M. Rangamani, 1607.07506 [hep-th]
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Entanglement entropy in holography

In AdS/CFT: a gravity theory on AdS⇔ CFT on its boundary

EE in the CFT is proportional to the area of an extremal surface
in the AdS space.

Into the bulk

BoundaryA∂A ∂A

W

SEE =
A[W]

4GN

Time-independent holographic EE: S. Ryu, T. Takayanagi hep-th/0603001
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Perturbative holographic entanglement entropy

Area is a functional of embedding: A[X,G]

Metric G = background + perturbation

Perturbing the background metric changes EE

δSEE =
1

4GN

∫
dd−2ξ

(
δA

δXm
δXm +

δA

δGmn
δGmn

)
Change in embedding Change in metric
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δSEE =
1

4GN

∫
dd−2ξ

δA

δGmn
δGmn

δA

δGmn
and the integral are evaluated on the extremal surface in

the background metric.



A first law for rates

Asymptotically AdS metric

ds2 =
L2

z2
(
dz2 + gµνdxµdxν

)
gµν = g(0)µν + g(2)µν z

2 + . . .+ g(d)µν z
d + . . .

Our setup:

Background: ds2 = L2

z2

(
dz2 + gtt(z)dt

2 + gxx(z)δijdx
idxj

)
Perturbation: ∂xδgµν = 0 Translational invariance

δgij = δgxxδij Rotational invariance
∂tδg

(n<d)
µν = 0 Boundary conditions

Subregion small compared to other scales⇒ z small

First law of entanglement rates: ∂tδSEE ∝ ∂tδE
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A first law for rates

Under our assumptions, rate of change of EE

∂tδSEE = ∂tδg
(d)
xx

d

4GN

∫
dd−2ξ zd

δA

δgxx

Boundary stress tensor

〈Tµν〉 = dLd−1

16πGN
g
(d)
µν +Xµν

[
g(n<d)

]
S. de Haro, K. Skenderis,

S. N. Solodukhin, hep-th/0002230

δg(d) traceless⇒ δ〈Ttt〉 = dδ〈Txx〉 − δXµ
µ

With our assumptions, the Weyl anomaly is time-independent,
∂tδ〈Tµµ〉 = ∂tδX

µ
µ = 0, so rate of change of the energy:

∂tδE = ∂tδg
(d)
xx

d(d− 1)Ld−1

16πGN
Vol(A)
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A first law for rates

Rate of change of energy is proportional to rate of change of
EE, “First law of entanglement rates”:

∂tδSEE = ∂tδE
1

4π(d− 1)Ld−1Vol(A)

∫
dd−2ξ zd

δA

δgxx︸ ︷︷ ︸
T−1
ent



Massless scalar field

Einstein gravity coupled to massless scalar field

S =
1

16πGN

∫
dd+1x

√
−G

(
R− 2Λ− 8πGN (∂φ)2

)
Massless scalar φ⇔ Marginal scalar operator O

φ = φ0 + φ2z
2 + . . .+ φdz

d + . . .

Source Determines 〈O〉

Choose a source φ0 = −ct.
Shift symmetry of φ⇒ g

(n<d)
µν depend only on derivatives of φ

⇒ are time independent.
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Massless scalar field

To be concrete, choose d = 3.

Solving Einstein’s equations near the boundary:

gµν = ηµν +
(
8πGNc

2δtµδ
t
ν + 2πGNc

2ηµν
)
z2 + δg(3)µν z

3 + . . .

φ = −ct+ φ3z
3 + . . .

Coefficients of z3 undetermined by near boundary analysis.

Time-independent contribution to EE from coefficient of z2.
Time-dependent contribution from coefficient of z3.

Boundary energy momentum tensor

〈Tµν〉 = − 2√
−g(0)

δS

δg
(0)
µν

=
3L2

16πGN
g(3)µν

Contribution to energy comes from the coefficient of z3.
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Massless scalar field

δSsphere
EE =

δE

T sphere
ent

+
2

3
πc2R2

δSstrip
EE =

δE

T strip
ent

+
π2Γ

(
1
4

)
6
√

2Γ3
(
3
4

)c2`Vol(R)

First law of entanglement is violated, but taking time derivatives
gives a first law for the rates.

Entanglement temperature depends on geometry:

T sphere
ent =

2

πR

T strip
ent =

16Γ
(
3
4

)
πΓ2

(
1
4

) 1

`

The same as for a time-independent perturbation of the state of
a 3d CFT.



Massless scalar field

Can carry out the same calculation in other dimensions.

In d = 2

δSEE =
δE

Tent
+

2π

9
c2R2 (4− 3 log(2R/L) + 6η)

η comes from scheme dependence in renormalization.

In d = 4, for a sphere

δSEE =
δE

Tent
− π2

9
c2R2 (5− 6 log(2R/ε))

ε is a short distance cutoff.



An example with an electric field

On AdS5×S5, insert a D7-brane filling the AdS5×S3 subspace.

SD7 ∝
∫

d8ζ
√
−det (Γab + 2πα′Fab)

Metric on D7-brane U(1) gauge field strength

Make ansatz for x component of gauge field:

Ax = −E t+ ax(u)

Electric field in CFT
Some function of radial coordinate

To compute entanglement entropy and energy in the CFT, we
need the linearised backreaction of the brane.

We find the first law for rates is satisfied for sphere and strip.



Conclusions

For time dependent perturbations under certain assumptions a
first law for rates holds, but the first law in the form δSEE ∝ δE
can be violated.

Explicit examples of a first law for rates: marginal scalar
operators with time-dependent sources, electric field.

Not clear whether the first law in the form of δSEE = δ〈H〉 holds.

Understanding the first law for rates may help with calculating
the rate of entanglement entropy production in systems.

How general is the first law for rates? Answering this could help
to understand non-equilibrium physics.
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