Supersymmetric Decays in SoftSusy

Thomas Cridge

Supervisor: Ben Allanach

Durham YTF 9 Conference – 12/01/2017

Department of Applied Mathematics and Theoretical Physics (DAMTP)

See https://softsusy.hepforge.org/ for list of SoftSusy papers and manuals.

Overview for the talk:

- 1. Searches for Supersymmetry
- 2. Analysis Context, Motivations for Decay Calculator
- 3. How it works
- 4. Capabilities
- 5. Decay modes, validation, uses:
 - MSSM Susy decays
 - Higgs decays
 - (- Gravitino decays)
 - $-1 \rightarrow 3$ decays
 - NMSSM decays
- 6. Summary

Searches for Susy

- . Lots of ways to search for susy
- Look for new particles via susy decays: $SUSY \rightarrow SUSY + SM$
- . Look for effects of new virtual particles:
- e.g. sfermion intermediates in $1 \rightarrow 3$ decays
- stops in $h \rightarrow \gamma \gamma$, Z γ , gg loops

• So far cMSSM significantly constrained, although still room for pMSSM.

3

Framework for Susy searches

Durham YTF 9 Conference – 12/01/2017

Current setup and programs

Motivations for SoftSusy Decay Calculator

- All-in-One spectrum generation and decay calculation
- Ease and Usability
- Contains all phenomenologically relevant decays:
- SUSY
- Higgs
- Gravitino
- NMSSM
- All in one place!

 Provides additional code for decay BRs comparison – improves knowledge of theoretical errors and variation involved.

How it works – 1 Input File

UNIVERSITY OF

CAMBRIDGE

1 Output file in SLHA form

View Go Help	3	lesHouchesOutput
lesHouchesOutput	File Edit View Text Document Navigation Help	
File Falls Many Texts Descurrent Maniantian Hale	# Z3 = 1, SoftHiggsOut = 0	
File Edit View Text Document Navigation Help	# Mass spectrum # PDG code mass particle	
# SOFTSUSY3.7.4 SLHA compliant output	24 8.03773761e+01 # MW	
# B.C. Allanach, Comput. Phys. Commun. 143 (2002) 305-331, hep-ph/0104	25 1.06125456e+02 # h0(1)	
Block SPINFO # Program information	35 4.592437690+02 # N0(2) 45 5.138421160+02 # h0(3)	
1 SOFTSUSY # spectrum calculator	36 4.75604020e+02 # A0(1)	
2 3 7 4 # version number	46 5.17643738e+02 # A0(2)	
2 5.7.4 # Version number	37 5.19733930e+02 # H+	
BLOCK MODSEL # Select model	1000021 5.195884310+02 # ~g 1000022 7 72506034e+01 # ~peutralino(1)	
1 1 # sugra	1000022 7.725000342+01 # "Heutratino(1) 1000023 1.43487708e+02 # ~neutralino(2)	
3 1 # NMSSM	1000024 1.42956970e+02 # ~chargino(1)	
<pre>9 0 # call micrOmegas (default: 0 = no)</pre>	1000025 -3.24123822e+02 # ~neutralino(3)	
<pre>13 1 # sparticle decays via NMSDECAY (default: 0)</pre>	1000035 3.40829262e+02 # ~neutralino(4)	
12 4.52388280e+02 # parameter output scale	1000045 5.37613642e+02 # ~neutralino(5)	
Block SMINPHITS # Standard Model inputs	1000001 6.01605489e+02 # ~d_L	
1 1 270180000+02 # standard house thrace	1000002 5.96553856e+02 # ~u_L	
1 1.2/510000c+02 # acpina_em (-1)(Hz) SH HSbai	1000003 6.01602918e+02 # ~s_L 1000004 5.96551264e+02 # ~c_L	
2 1.10039000e-05 # 0 Fermi	1000005 5.18172073e+02 # ~b 1	
3 1.18900000e-01 # alpha_s(MZ)MSbar	1000006 3.80037250e+02 # ~t_1	
4 9.11876000e+01 # MZ(pole)	1000011 4.22929545e+02 # ~e_L	
5 4.2000000e+00 # mb(mb)	1000012 4.15128928e+02 # ~nue_L 1000013 4.22932704e+02 # ~mu_L	
6 1.70900000e+02 # Mtop(pole)	1000014 4.15121260e+02 # ~numu L	
7 1.77700000e+00 # Mtau(pole)	1000015 4.00955036e+02 # ~stau_1	
Block MINPAR # SUSY breaking input parameters	1000016 4.12825312e+02 # ~nu_tau_L	
3 1.0000000e+01 # tanb. DBbar. Feynman gauge	2000001 5.888557590+02 # ~0_K 2000002 5.882516980+02 # ~1_R	
4 1 0000000000 # sign(mu)	2000003 5.88853082e+02 # ~s R	
1 4 00000000000 # Sign(ind)	2000004 5.88249079e+02 # ~c_R	
	2000005 5.84772590e+02 # ~b_2	
2 2.00000000e+02 # m12	2000000 5.795085592+02 # ~t_2 2000011 4.08716920e+02 # ~e R	
5 -3.00000000e+02 # A0	2000013 4.08690387e+02 # ~mu R	
Block EXTPAR # scale of SUSY breaking BCs	2000015 4.23561796e+02 # ~stau_2	
0 2.70752239e+16 # MX scale	Block NMHmix # CP even Higgs mixing ma	trix
# SOFTSUSY-specific non SLHA information:	$1 1.0/09/004e-01 \# 5_{1,1}$ 1 2 9.92977500e-01 $\# 5_{1,2}$	
# MIXING=2 Desired accuracv=1.00000000e-04 Achieved accuracv=8.5461764	1 3 -5.02583210e-02 # S_{1,3}	
# 3-loop RGE corrections are off, 2-loop Yukawa/g3 thresholds are off	2 1 1.23366318e-01 # S_{2,1}	
# 2-loop SUSY OCD computation of squark/qluino pole masses are off	2 2 3.088080550-02 # 5_{2,2} 2 3 9.91675408e-01 # 5 {2,3}	
# 73 = 1 SoftHiggsOut = 0	3 1 9.86565237e-01 # S {3,1}	
Block MASS # Mass spectrum	3 2 -1.12405729e-01 # S_{3,2}	

UNIVERSITY OF CAMBRIDGE

Durham YTF 9 Conference – 12/01/2017

8

1 Output file in SLHA form

Vie	ew Go	Help											les	HouchesOutpu
1						locHouch	ocOutput	File	Edit View T	ext Document	Navigatio	n Help		
File	#	PDG	Width											
# S	DECAY	35	3.0012	5008e-01	# H_0	(heavy	higgs)	decay	S					
# B	#	PW		BR		NDA	PDG1		PDG2					
Blo		2.78264729e	11	9.2716275	4e-11	2	2		-2	# H	-> u	ub		
		1.80296909e	10	6.0073937	3e-10	2	1		-1	# H	-> d	db		
Blo		7.79140519e	06	2.5960533	80e-05	2	4		-4	# H	-> C	cb		
		8.64306061e	08	2.8798202	20e-07	2	3		- 3	# H	-> S	sb		
		4.42931827e	05	1.4758244	6e-04	2	5		- 5	# H	-> b	bb		
		2.07374757e	02	6.9096127	1e-02	2	6		-6	# H	-> t	tb		
		6.95536206e	13	2.3174883	84e-12	2	11		-11	# H	-> e	- e+		
Blo		2.97363271e	08	9.9079804	3e-08	2	13		-13	# H	-> m	u- mu+		
		8.41000528e	06	2.8021674	4e-05	2	15		- 15	# H	-> t	au- ta	u+	
		3.45243551e-	03	1.1503325	0e-02	2	10000	22	100002	22 #H	-> ~	chi 10	~chi 1	LO
		1.97235209e-	02	6.5717685	3e-02	2	10000	22	100002	23 #H	-> ~	chi 10	~chi ²	20
		3.58278886e-	04	1.1937655	2e-03	2	10000	22	100002	25 #H	-> ~	chi 10	~chi 3	30
		1.83054243e	02	6.0992665	7e-02	2	10000	23	100002	23 #H	-> ~	chi 20	~chi 2	20
Plo		1.34984061e	04	4.4975945	6e-04	2	10000	23	100002	25 #H	-> ~	chi 20	~chi 3	30
всо		1.14619819e	07	3.8190692	25e-07	2	10000	25	100002	25 #H	-> ~	chi 30	~chi 3	30
		1.20851258e	03	4.0266973	6e-03	2	10000	24	- 100002	24 #H	-> ~	chi ¹ +	~chi 1	L-
		2.55910284e	04	8.5267897	2e-04	2	25		25	# H	-> h	h _	_	
		1.12799806e	05	3.7584274	2e-05	2	22		22	# H	-> q	amma ga	amma	
Blo		9.80376043e	05	3.2665589	8e-04	2	21		21	# H	-> g	luon g	luon	
		8.36105100e	06	2.7858561	5e-05	2	23		22	# H	-> Z	gamma		
# S		1.60542630e	01	5.3491920	4e-01	2	24		-24	# H	-> W	+ W-		
# M. # 2		7.52274315e	02	2.5065365	9e-01	2	23		-23	# H	-> Z	Z		
# 3 # 2	#													
# Z	3 = 1, ck MASS	SoftHiggsOut =	0 #	Mass sner	trum			3	1 9.86 2 -1.12	5565237e-01 2405729e-01	# S_{3, # S_{3,	1} 2}		
Du	ırham ۱	/TF 9 Conference	e – 12/02	1/2017			UNIVER CAMB	SITY RIDO	OF GE			Thor	nas Cri	idge

SoftSusy Decay Capabilities

- All $1 \rightarrow 2$ decays of MSSM SUSY particles.
- All $1 \rightarrow 2$ higgs decays in MSSM.
- Phenomenologically Relevant 1 \rightarrow 3 decays in MSSM (e.g. for compressed spectra)
- Higgs 1-loop decays: h -> yy, Zy, gg in MSSM and NMSSM
- Higgs $1 \rightarrow 3$ decays via VV*: h -> VV* -> V f fbar
- Decays to gravitinos in MSSM
- All $1 \rightarrow 2$ decays of SUSY and higgs particles in NMSSM (extended higgs and neutralino sectors).

Durham YTF 9 Conference – 12/01/2017

MSSM Susy decays $- \chi_4^0$

· Validation plots e.g. neut 4

Spectrum Plot generated with slhaplot of pyslha-3.2.0: Buckley arXiv:1305.4194

MSSM Susy decays $- \chi_4^0$

· Validation plots e.g. neut 4

Spectrum Plot generated with slhaplot of pyslha-3.2.0: Buckley arXiv:1305.4194

NIVERSITY OF

AMBRIDGE

Durham YTF 9 Conference – 12/01/2017

MSSM Susy decays 2 – DM as χ_1^0 LSP

- DM search e.g. suppose DM is lightest neutralino, may want to look at decays into neutralino1.
- Can examine which particle types are produced in association and in what percentages to look for signals.

Higgs decays – BRs as mh scanned up to 200GeV

 BRs of lightest higgs as mass scanned – SoftSusy Decays plot on left, classic plot from LHC Higgs cross section working group on right:

Denner, Heinemeyer, Puljak, Rebuzzi, Spira "Standard Model Higgs Boson Branching ratios with Uncertainties", arXiv:1107.5909

Higgs decays 1 – BRs at mh = 125.09GeV

 Comparison of BRs for SM like higgs – SoftSusy Decays module vs hdecay program

$1 \rightarrow 3$ decays

$$\Gamma(1 \to N) = \int \cdots \int_{N} \frac{S(2\pi)^{4} \langle |M|^{2} \rangle}{2m} \delta^{(4)}(P - \sum_{i=1}^{n} p_{i}) \prod_{i=1}^{n} \frac{d^{3} p_{i}}{(2\pi)^{3} 2E_{i}}$$

- . Each additional decay particle suppresses Γ (PW)
- 1 -> 2 favoured over 1 -> 3, but when 1 -> 2 not allowed, 1 -> 3 important.

AMBRIDGE

. E.g. Compressed spectra: $m_{decay} - m_{Susy \ product} < m_{SM}$

Durham YTF 9 Conference – 12/01/2017

$1 \rightarrow 3$ decays Plot

NMSSM – theory

- Add gauge singlet chiral superfield S -> one new SUSY fermion (singlino) and 2 new Susy scalars
 - Singlino \tilde{S} mixes with neutralinos $\tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{3}^{0}, \tilde{\chi}_{4}^{0}$ -> 5 neutralinos
 - Scalars form 2 extra higgses bosons, assuming CP conservation in higgs sector ->
 - 1 extra CP even higgs h_3 + 1 extra CP odd higgs A_2
 - -> Mix with 2 CP even higgses and 1 CP odd higgs of MSSM

NMSSM – theory and motivations

• µ problem

Sets scale of higgsino/higgs masses

 $W = \hat{u}^c \mathbf{h}_{\mathbf{u}} \hat{Q} \hat{H}_u - \hat{d}^c \mathbf{h}_{\mathbf{d}} \hat{Q} \hat{H}_d - \hat{e}^c \mathbf{h}_{\mathbf{e}} \hat{L} \hat{H}_d + \boldsymbol{\mu} \hat{H}_u \hat{H}_d$

Have to set μ to EW/SUSY scale by hand -> fine-tuned

- NMSSM:

 $W = \hat{u}^c \mathbf{h}_{\mathbf{u}} \hat{Q} \hat{H}_u - \hat{d}^c \mathbf{h}_{\mathbf{d}} \hat{Q} \hat{H}_d - \hat{e}^c \mathbf{h}_{\mathbf{e}} \hat{L} \hat{H}_d + \frac{\lambda \hat{S} \hat{H}_u \hat{H}_d}{3} + \frac{1}{3} \kappa \hat{S}^3$

- Give \tilde{S} a vev -> dynamically generate $\mu = \lambda \langle S \rangle$ at Susy scale
 - ---- > No µ problem!

• Higher higgs masses:

Ellwanger, Hugonie, Teixeira arXiv:0910.1785

- MSSM at tree-level: mh < mz -> Problem getting mh near 125GeV
- NMSSM: masses enhanced by extra $\kappa(S)$ term -> larger mh
- Allows less fine-tuned stop masses!

- New heavier CP odd higgs, A₂ in NMSSM.
- Consider it's decays with right-hand spectrum.

 Note no NMSSM specific decays open initially.

AMBRIDGE

Summary and Conclusions

- Softsusy-4.0 will include a decay calculator -> OUT SOON!
- This will calculate the decays:
 - -> SUSY 1->2 at tree-level
 - -> SUSY relevant 1->3 at tree-level
 - -> Higgs 1->2 at tree-level
 - -> Higgs -> VV* -> Vffbar (1->3)
- OCD Corrections included here

MBRIDGE

- 2) Ease and Usability all-in-one
- 3) Consistency throughout
- 4) Comparison with other codes -> theoretical error

Aside on CMSSM and pMSSM

CMSSM assumes at the GUT scale that:

- all the scalar particles have the same mass m_0
- all the gauginos have the same mass $m_{1\!/\!2}$
- all the trilinear couplings are the same \boldsymbol{A}_0
- other free free parameter is $tan\beta = v2/v1$
- $sign(\mu)$ (higgsino mass term) not fixed

PMSSM reduces no. of free parameters to 19 by assuming:

- no new source of CP-violation
- no Flavour Changing Neutral Currents
- first and second generation universality

The large parameter space of pMSSM makes searches challenging.

Motivations for Supersymmetry

- Technical Hierarchy Problem corrections to higgs masses
- . Gauge Coupling Unification

[Figure: D.I. Kazakov, <u>hep-ph/0012288</u> p 12 .]

- . Dark Matter χ_1^0 LSP
- . GUTs and Susy String Theories

$$\Delta m_H^2 = -rac{|\lambda_f|^2}{8\pi^2} [\Lambda_{
m UV}^2 {+} \dots].$$

$$\Delta m_{H}^2 = 2 imes rac{\lambda_S}{16 \pi^2} [\Lambda_{
m UV}^2 {+} \dots].$$

Searches for Supersymmetry

- Susy predicts whole swathe of new particles on top of the usual 17 SM particles we get another 32 particles.
- Breaking mechanism unknown add in soft terms by hand to break susy.

 $\mathcal{L} = \mathcal{L}_{\rm SUSY} + \mathcal{L}_{\rm soft},$

- "120 new parameters" search large parameter space
- 5 parameters (m0, m1/2, A0, tanbeta, sign(mu)) in mSUGRA
- 4 parameters in AMSB (m0, m3/2, tanbeta, sign(mu))
- 6 parameters for GMSB (Λ, Μ, n5, tanbeta, sign(mu), Cgrav).
- Our lack of knowledge => don't know masses or couplings => searches for susy particles over wide mass ranges and large parameter spaces.

Particle Type	Spin	R_p	Label
gluino	$\frac{1}{2}$	-1	$ ilde{g}$
squark	0	-1	$egin{array}{cccccccccccccccccccccccccccccccccccc$
slepton	0	-1	$egin{array}{cccc} ilde{e}_L & ilde{e}_R & ilde{ u}_e \ ilde{\mu}_L & ilde{\mu}_R & ilde{ u}_\mu \ ilde{ au}_1 & ilde{ au}_2 & ilde{ u}_ au \end{array}$
chargino	$\frac{1}{2}$	-1	$\chi_1^{+/-}$ $\chi_2^{+/-}$
neutralino	$\frac{1}{2}$	-1	$\chi^0_1 \ \chi^0_2 \ \chi^0_3 \ \chi^0_4$
Higgs bosons	0	+1	$h^0 H^0 H^+ H^- A^0$

Constraint Plots

UNIVERSITY OF CAMBRIDGE

Durham YTF 9 Conference – 12/01/2017

	Softsusy (3.7.4)	Susyhit (1.5)	FeynHigg s (2.11.1)	SP heno (3.3.6)	Isajet (7.84)	Pythia (8.2)	NMSSM -Tools (4.6.0)	Herwig ++ (2.7)
Production Cross- sections	×	×	✓ (LHC and Tevatron)	✓ (e+e- only)	✓ (pp, ppbar, e+e-)	*	×	~
Spectrum calculator	~	~	✓ (for Higgses)	~	~	×	~	×
Highest order loop corrections in spectrum	3	2 (Suspect)	2 (although some resummation to all orders)	2	2	-	2	-
NMSSM	~	×	×	×	×	-	~	-
FV	~	~	<	~	×	-	×	-
RPV	~	×	×	~	×	-	×	-
Neutrino masses and mixings	~	×	×	~	1	-	×	-
Experiment constraints	¥ (Except EW)	✓ (Suspect)	~	~	~	-	~	-
Decay calculator	NEW	~	~	~	~	~	~	~
Susy decays	NEW	✓ (Sdecay)	×	~	~	~	~	~
Higgs decays	NEW	✓ (Hdecay-up to 3-loop corrections)	~	~	~	~	~	~
Loop corrections to widths	NEW – onlyh-> qqsofar	~	~	Only via running couplings (+g Qcd corrections for h ->qq)	*	Only via running couplings	✓ (1-loop SM QCD corrections)	~
NMSSM	NEW	×	×	×	×	×	~	×
RPV	Not yet - maybe in future	×	×	~	×	~	×	~

Allanach, Kraml, Porod "Comparison of SUSY mass spectrum calculations", arXiv:hep-ph/0207314

Durham YTF 9 Conference – 12/01/2017

How it works 2 – What happens next?

UNIVERSITY OF

CAMBRIDGE

How it works 3 – Decay calculator Specifics

UNIVERSITY OF

CAMBRIDGE

Durham YTF 9 Conference – 12/01/2017

Assumptions made

R-parity conservation (RPC)

$$R_p = (-1)^{(3(B-L)+2S)}$$

- No additional CPV relative to SM
- No additional flavour violation relative to SM
- Only sfermion mixing in 3rd generation.

$$\theta_{u} = \theta_{d} = \theta_{c} = \theta_{s} = \theta_{e} = \theta_{\mu} = 0$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & f_{t} \end{pmatrix}$$

$$\theta_{t}, \theta_{b}, \theta_{\tau} \neq 0$$

MSSM Susy decays 2 (continued) $- \chi_4^0$

Spectrum Plot generated with slhaplot of pyslha-3.2.0: Buckley arXiv:1305.4194

MSSM Susy decays 1 - stop1

Validation plots

excellent agreement!

Higgs decays 3 - H

Spectrum Plot generated with slhaplot of pyslha-3.2.0: Buckley arXiv:1305.4194

Higgs decays 4 - h, $H \rightarrow \gamma\gamma$

. Contributions to h \rightarrow gamma gamma in MSSM at mh =125GeV and for heavier higgs at mH = 706.4GeV.

CAMBRIDGE

Imaginary parts of loop integrals:

$$\begin{split} f(\tau) &= \begin{cases} [\sin^{-1}(\frac{1}{\sqrt{\tau}})]^2, \ for & \tau \ge 1, \\ -\frac{1}{4}[ln(\frac{1+\sqrt{1-\tau}}{1-\sqrt{1-\tau}}) - i\pi]], \ for & \tau < 1 \end{cases} \\ \Gamma(\phi \to \gamma \gamma) &= \frac{g^2 \alpha_{em}^2 m_{\phi}^3}{1024\pi^3 m_W^2} ||\Sigma I_{loop}^{\phi}|^2 \end{split}$$

$$h$$
 h h h γ/Z

$$I_{\tilde{t}_{1}}^{h} = \frac{4}{3}\tau(1-\tau f(\tau))[R_{\tilde{t}_{L}\tilde{t}_{L}}^{1}\cos^{2}\theta_{t} + R_{\tilde{t}_{R}\tilde{t}_{R}}^{1}\sin^{2}\theta_{t} - 2R_{\tilde{t}_{L}\tilde{t}_{R}}^{1}\cos\theta_{t}\sin\theta_{t}]$$
$$I_{\tilde{t}_{2}}^{h} = \frac{4}{3}\tau(1-\tau f(\tau))[R_{\tilde{t}_{L}\tilde{t}_{L}}^{2}\sin^{2}\theta_{t} + R_{\tilde{t}_{R}\tilde{t}_{R}}^{2}\cos^{2}\theta_{t} + 2R_{\tilde{t}_{L}\tilde{t}_{R}}^{2}\cos\theta_{t}\sin\theta_{t}]$$

$$m_h > 2m_i \to \tau = \frac{4m_i^2}{m_h^2} < 1 \to$$

If h -> 2*loop particle can occur get imaginary part of loop integral!

Durham YTF 9 Conference – 12/01/2017

 $\tau = 4m_i^2/m_{\phi 0}^2$

Gravitino decays - theory

- Susy -> local symmetry to incorporate gravity -> spin 2 graviton.
 -> spin 3/2 susy partner: gravitino.
- Spontaneous susy breaking (SSB) -> massless goldstone fermion of spin 1/2 : goldstino.
- In EWSB, massless gravitino "eats" massless goldstino -> becomes gravitino's longitudinal dof -> gravitino becomes massive.
- In SSB scenarios, particularly GMSB the gravitino can be LSP.
- Decays to gravitinos are usually gravitational strength -> essentially decoupled.
- Goldstino dofs couple much more strongly -> gravitino inherits stronger coupled longitudinal components.
- Decays <u>NLSP -> LSP gravitino + SM</u> to be observable at colliders

Gravitino decays - plot

NMSSM Key parameters

Crucially – NMSSM decays not included in most alternative programs – only NMSSMTools or SARAH + SPheno together.

 $W = \hat{u}^c \mathbf{h}_{\mathbf{u}} \hat{Q} \hat{H}_u - \hat{d}^c \mathbf{h}_{\mathbf{d}} \hat{Q} \hat{H}_d - \hat{e}^c \mathbf{h}_{\mathbf{e}} \hat{L} \hat{H}_d + \frac{\lambda \hat{S} \hat{H}_u \hat{H}_d}{3} + \frac{1}{3} \kappa \hat{S}^3$

λ	- coupling of singlino to higgsinos, neutralino mixing, higgs masses
К	- contributes to higgs masses
A_{λ}	- soft susy breaking parameter, trilinear couplings
A _κ	- soft susy breaking parameter, trilinear couplings
tan β= $\langle Hu \rangle / \langle Hd \rangle$	- ratio of vevs of higgses, neutralino mixing via higgsinos
$\mu_{eff} = \lambda \langle S \rangle$	- higgsino masses, neutralino mixing

N.B. As \tilde{S} is gauge singlet it only couples to non-higgs particles via mixing with other neutralinos.

Durham YTF 9 Conference – 12/01/2017

UNIVERSITY OF CAMBRIDGE

NMSSM Scan Decays

CAMBRIDGE

Higgs decays 3 – A decays validation

Pseudoscalar higgs validation plots

NIVERSITY OF

AMBRIDGE

Durham YTF 9 Conference – 12/01/2017

Higgs decays 3 – A decays validation 2

Pseudoscalar higgs validation plots

Durham YTF 9 Conference – 12/01/2017

Higgs decays 3 – A decays validation 3

Pseudoscalar higgs validation plots

NIVERSITY OF

AMBRIDGE

Durham YTF 9 Conference – 12/01/2017

NMSSM - χ^0 singlino components

N.B. As \tilde{S} is gauge singlet it only couples to non-higgs particles via mixing with other neutralinos.

Durham YTF 9 Conference – 12/01/2017

CAMBRIDGE

NMSSM Scan Decays

N.B. As \tilde{S} is gauge singlet it only couples to non-higgs particles via mixing with other neutralinos.

AMBRIDGE