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The Effective Action Thermodynamics Background

The Partition Function

Understanding the effective action, is most easily done by looking at the
parallel between QFT and Statistical Mechanics via the approach taken in
Peskin and Schroeder , i.e. we recall:

The generating field functional is the QFT equivalent to the partition
function of a thermal system

Thermal fluctuations are replaced by quantum fluctuations
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The Effective Action Thermodynamics Background

Magnetic system in an external field H

Lets look at a magnetic system at a non zero temperature T 6= 0. The
preferred state will be given by that which minimises the Gibbs free energy.

For a magnetic system one defines the Helmholtz free energy F (H):

Z(H) = exp
(
−βF (H)

)
=

∫
Ds exp

(
−β
∫
dx(H (s)−Hs(x))

)
where H is the exterior magnetic field, H (s) is the spin energy density,
and β = 1/kBT .
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The Effective Action Thermodynamics Background

Magnetisation M

The magnetisation M of a system is given by the 1st moment of the spins
across the defined spatial region, and can be found via differentiation of
the Helmholtz free energy:

− ∂F

∂H

∣∣∣∣
β=ct

=
1

β

∂

∂H
(logZ)

=
1

Z

∫
dx

∫
Ds · s(x) exp

(
−β
∫
dx(H (s)−Hs(x))

)
=

∫
dx
〈
s(x)

〉
≡M
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The Effective Action Thermodynamics Background

The Gibbs free Energy G

In turn the Gibbs free energy G is defined as a Legendre transform of the
Helmholtz free energy:

G = F +MH

where we can see it satisfies:

∂G

∂M
=
∂H

∂M

∂F

∂H
+M

∂H

∂M
+H = H

If H = 0, G reaches an extremum at a corresponding value of M , and the
thermodynamic stable state is the minimum of G(M), i.e. G(M) gives a
picture of the favoured thermodynamic state that includes all effects of
thermal fluctuations.
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The Effective Action QFT equivalent

Constructing the QFT equivalent 1

We now construct the analogous in QFT. Considering a real scalar field φ
in the presence of an external source J(x), we define a vacuum energy
function E(J):

Z(J) = exp
(
−iE(J)

)
=

∫
Dφ exp

(
i

∫
d4xL(φ) + J(x)φ

)

Analogous to the thermodynamic case , we now take the functional
derivative of E(J) w.r.t. J(x):

δ

δJ(x)
E(J) = i

δ

δJ(x)
logZ = −

∫
Dφ · φ(x) exp

(
i
∫
L+ Jφ

)∫
Dφ exp

(
i
∫
L+ Jφ

)

≡ −〈Ω|φ(x) |Ω〉
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The Effective Action QFT equivalent

Constructing the QFT equivalent 2

We treat this value as the thermodynamic variable conjugate to J(x), and
through it define the classical field φcl(x) :

φcl(x) = 〈Ω|φ(x) |Ω〉J

i.e. the classical field is related to φ(x) in the same way M is related to
the spin field s(x), it is a weighted average over all possible fluctuations.

Now, analogous to the Gibbs free energy we define the Effective action
Γeff, via the Legendre transform:

Γ(φcl) ≡ −E(J)−
∫
d4yJ(y)φcl
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The Effective Action QFT equivalent

Constructing the QFT equivalent 3

Continuing along the path equivalent to the thermodynamic case, taking
the functional derivative of the effective action:

δ

δφcl

Γeff(φcl) =

− δ

δφcl(x)
E(J)−

∫
d4y

δJ(y)

δφcl(x)
φcl(y)− J(x)

= −
∫
d4y

δJ(y)

δφcl(x)

δE(J)

δJ(y)
−
∫
d4y

δJ(y)

δφcl(x)
φcl(y)− J(x)

= −J(x)

Again, if we have J(x) = 0, the effective action satisfies :

δ

δφcl

Γeff(φcl) = 0

i.e. the solutions, are values for the VEV of φ(x) in the stable quantum
states of the theory. Therefore by extremising the effective action one
finds the exact vacuum state of the QFT, including all effects of quantum
corrections
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The Effective Action QFT equivalent

The Effective potential Veff

Moreover, the effective action can be written as a derivative expansion
around the classical field:

Γeff(φcl) =

∫
d4x[−Veff(φcl) +

1

2
(∂µφcl)

2Z(φcl) + . . .]

where we note that Veff(φcl) is an ordinary function and is called the
effective potential.

Furthermore, since we’re only interested in cases in which the VEV is
translational invariant, the minimisation of Γeff reduces to:

Γeff(φcl) = −(V T ) · Veff(φcl) ⇒ ∂

∂φcl

Veff(φcl) = 0
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The Effective Action Computing Γeff

Finding the effective action

Using the concept of functional derivatives, and by expanding around the
classical field by defining φ(x) = φcl(x) + η(x), one can find the effective
action:

Γeff =

∫
d4xL1(φcl) +

+
i

2
log

(
det

(
− δL1
δφδφ

))
− i · (connected diagrams) +

+

∫
d4xδL(φcl)

Implicitly, if we know the effective action we know the effective potential
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Coleman Weinberg mechanism Simple massless scalar model

Toy model

Let’s now try and look at a simple model and actually try and compute
the effective potential, consider the following massless self interacting
scalar theory:

L =
1

2
(∂µφ)2 − λ

4
φ4+

+
1

2
A(∂µφ)2 − 1

2
Bφ2 − 1

4!
Cφ4

where, A = Zφ − 1, B = Zm − 1 and C = Zλ − 1 are the usual
counterterms.

Dumitru Dan Smaranda CW Mechanisms 11th of January 2017 12 / 29



Coleman Weinberg mechanism Simple massless scalar model

Toy model

Let’s now try and look at a simple model and actually try and compute
the effective potential, consider the following massless self interacting
scalar theory:

L =
1

2
(∂µφ)2 − λ

4
φ4+

+
1

2
A(∂µφ)2 − 1

2
Bφ2 − 1

4!
Cφ4

where, A = Zφ − 1, B = Zm − 1 and C = Zλ − 1 are the usual
counterterms.

Dumitru Dan Smaranda CW Mechanisms 11th of January 2017 12 / 29



Coleman Weinberg mechanism Simple massless scalar model

Toy model

Let’s now try and look at a simple model and actually try and compute
the effective potential, consider the following massless self interacting
scalar theory:

L =
1

2
(∂µφ)2 − λ

4
φ4+

+
1

2
A(∂µφ)2 − 1

2
Bφ2 − 1

4!
Cφ4

where, A = Zφ − 1, B = Zm − 1 and C = Zλ − 1 are the usual
counterterms.

Dumitru Dan Smaranda CW Mechanisms 11th of January 2017 12 / 29



Coleman Weinberg mechanism Simple massless scalar model

1 Loop Order - I

It turns out that computing the functional determinant in the effective

action log

(
det
(
− δL1
δφδφ

))
, is equivalent with finding the 1-loop

approximation to the effective potential.

This in turn can be calculated for our φ4 theory via the polygon graph
series:

Figure: Polygon Graph Corrections to the potential
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Coleman Weinberg mechanism Simple massless scalar model

1 Loop Order - II

Introducing the counter-terms as well , the 1LO effective potential is:

Veff(φcl) =
λ

4!
φ4cl −

1

2
Bφ2cl −

1

4!
Cφ4cl + i

∫
ddk

(2π)d

∞∑
n=1

1

2n

(
λφ2cl/2

k2 + iε

)n

Which, after summing the series provides:

Veff(φcl) =
λ

4!
φ4cl −

1

2
Bφ2cl −

1

4!
Cφ4cl +

1

2

∫
ddk

(2π)d
log

(
1 +

λφ2cl/2

k2 + iε

)
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Coleman Weinberg mechanism Simple massless scalar model

1 Loop Order - III

Using the usual bag of tricks for renormalization, be it dimReg or
momentum cut-off schemes, we impose the renormalisation conditions at
an arbitrary mass scale M :

∂2Veff

∂φ2cl

∣∣∣∣∣
φcl=M

= 0 and
∂4Veff

∂φ4cl

∣∣∣∣∣
φcl=M

= λ

We find:

Veff(φcl) =
λ

4!
φ4cl +

λ2φ4cl

256π2
(log

φ2cl

M2
− 25

6
)
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Coleman Weinberg mechanism SSB induced via loop corrections

Coleman - Weinberg Mechanism I

Looking at the potential more closely :

Veff(φcl) =
λ

4!
φ4cl +

λ2φ4cl

256π2
(log

φ2cl

M2
− 25

6
)

We see that the logarithm transforms the minimum at the origin into a
local maximum!

−→
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Coleman Weinberg mechanism SSB induced via loop corrections
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Coleman Weinberg mechanism SSB induced via loop corrections

Coleman - Weinberg Mechanism II

−→

Our loop corrections have made our potential unstable, i.e. the quantum
corrections induce SSB.

But why do we care?
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Incorporating the CW mechanism The SM and fine tuning

The Hierarchy Problem and Fine tuning I

From S.M. Higgs potential:

V (H) = µ|H|2 + λ|H|4

after applying the quantum corrections,mainly the dominant top quark
correction:

we find the corrected Higgs mass squared (up to one loop):

m2
H = µ2 − y2t

8π2
Λ2

UV
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Incorporating the CW mechanism The SM and fine tuning

The Hierarchy Problem and Fine tuning II

This is the Hierarchy problem:

m2
H = µ2 − y2t

8π2
Λ2

UV

Supposing the UV cut-off scale is somewhere at the Planck scale (e.g.
1018GeV), we need to fine tune the manually added µ parameter to some
30 digits to get back a corrected Higgs mass of 125 GeV

What can we do?

This is where the CW mechanism comes in. It can provide a naturally
small mass scale via radiative generation!
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Incorporating the CW mechanism CW in the SM

CW mechanism in the Standard Model I

In their original paper, Coleman and Weinberg assumed a Weinberg-Salam
theory of leptons, and based on the W,Z masses it predicted a Higgs Mass:

mH ≈ O(10 GeV)
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Incorporating the CW mechanism CW in the SM

CW mechanism in the Standard Model II

It gets even worse when you add in the top corrections , which make the
Higgs mass squared negative!

So, What can we do?

As per usual in BSM physics, you add in more stuff!
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Incorporating the CW mechanism CW in extended models

Neutrino Scalar extension to the SM - I

For example, following Meissner and Nicolai (arXiv:hep-th/0612165) we
can look at a scalar extension to the SM which couples with neutrinos via
a Yukawa interaction, and to the Higgs field via a quadratic coupling:

L =(L̄iΦY E
ij E

j + Q̄iεΦ∗Y D
ij D

j + Q̄iεΦ∗Y U
ij U

j+

+ L̄iεΦ∗Y ν
ijν

j
R + φ(νiR)TCYM

ij ν
j
R + h.c.)−

− λ1
4

(Φ†Φ)2 − λ2
2
φ(Φ†Φ)− λ3

4
φ4
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Incorporating the CW mechanism CW in extended models

Neutrino Scalar extension to the SM - II

Assuming small neutrino masses, discarding the SU(2)W × U(1)Y and
SU(3)C and keeping the top quark as the dominant fermion contribution,
one can find the effective potential:

Veff(H,φ) =
λ1H

4

4
+
λ2H

2φ2

2
+
λ3φ

4

4
+

+
3

256π2
(λ1H

2 + λ2φ
2)2 ln

(
λ1H

2 + λ2φ
2

ν2

)
+

+
1

64π2
F 2
+ ln

(
F+

ν2

)
+

1

64π2
F 2
− ln

(
F−
ν2

)
−

− 3

16π2
g4tH

4 ln

(
H2

ν2

)
− 1

32π2
g4Mφ

4 ln

(
φ2

ν2

)
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Incorporating the CW mechanism CW in extended models

Neutrino Scalar extension to the SM - III

Since minimising the potential to obtain the VEV of the fields analytically
isn’t really feasible we turn to a numeric search. Redefining our fields via
the auxiliary dimensionless fields h, ϕ, we find the numerical minimum of
the potential:

Figure: The dimensionless effective potential as a function of h, ϕ
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Incorporating the CW mechanism CW in extended models

Finding H,φ masses

Imposing a set of constraints, namely:

setting the Higgs VEV to 〈H〉 = 174 GeV

Higgs mass of 125 GeV

ensuring small neutrino masses by imposing the approximate mass
given by (Yν 〈H〉)2/YM 〈φ〉 be less than 1 eV

we can scan over the free parameter range and find a set of suitable values!
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Incorporating the CW mechanism CW in extended models

Stability and Landau poles - I

After finding the respective set of suitable bare couplings we still need to
check the effective couplings for Landau poles or instabilities up to a high
scale.
Based on where we consider the cut off scale (e.g. the Planck Scale) the
couplings will behave as :
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Incorporating the CW mechanism CW in extended models

Stability and Landau poles - II
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Incorporating the CW mechanism CW in extended models

Predicted φ mass

If the high scale is dictated by the Planck scale, then we end up with a
real scalar with a mass of the order:

mφ ≈ O(500 GeV)

or if alternatively we have an intermediate scale , e.g. 1010 GeV the model
would predict:

mφ ≈ O(1000 GeV)

No Fine Tuning!

And note that we didn’t have to fine tune anything!
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Incorporating the CW mechanism CW in extended models

Conclusions & Future Work

To sum it up:

The effective potential incorporates the quantum corrections

The corrections can qualitatively change the behaviour of the theory

The CW mechanism failing in the SM implies extra fields

No need for fine tuning

Future Work will be centred around incorporating the CW mechanism into
a SO(10) GUT model.
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