

Khronometric Theory, Numerical GR and Blackholes

James Cook Kings College London Supervisor: Dr Eugene Lim

Plan for the talk

- ADM and Numerical GR
- Einstein Aether Theory
- Khronometric Theory
- Blackholes in Khronometric Theory
- Current and Future Work

ADM and Numerical GR

Numerical GR

- There exists many problems that have no analytical solutions
- We want to solve these problems!
- We want to reform GR into a 3+1 system of equations where we provide initial data, solve then evolve
- We use ADM Formulate as a Cauchy Problem

ADM (Arnowitt-Deser-Misner)

 We foliate spacetime into space like hypersurfaces

$$ds^{2} = \left(-\alpha^{2} + \beta_{i}\beta^{i}\right)dt^{2} + 2\beta_{i} dt dx^{i} + \gamma_{ij} dx^{i} dx^{j}$$

 We calculate Extrinsic Curvature

$$K_{ij} = \frac{1}{2\alpha} \left[-\partial_t \gamma_{ij} + D_i \beta_j + D_j \beta_i \right]$$

- Use projectors to calculate constraint equations and evolution equations
- Spacetime separated in 3+1 so can be solved numerically provided initial K and γ

Diagram to show two adjacent spacelike hypersurfaces, and the definitions for α and β

Einstein-Aether Theory

Einstein-Aether Theory - Motivation

- All current tests of GR involve systems that are weakly gravitating - Binary Pulsars and Solar System. (Gravitational waves have only just been discovered, need eLISA to detect Extreme Mass Ratio Inspirals)
- GR incompatible with Quantum Gravity due to mathematical pathologies, such as singularities in blackhole collapse
- Cosmological Constant is not theoretically satisfying why is it so small?
- Possible Solution Break Lorentz Invariance

Einstein-Aether Theory - Introduction

- Presume the direction of a preferred direction in spacetime - Violation of boost invariance
- We do this by introducing a timeline unit norm dynamical vector field (Aether Field) U
- Couple to gravity and not matter (No fifth force!)

Einstein-Aether Theory - The Action

 We can write our action in the most general form with two of fewer derivatives as

$$S_{AE} = \frac{1}{16\pi G_{AE}} \int d^4x \sqrt{-g} \left(-R - M^{\alpha\beta}{}_{\mu\nu} \nabla_{\alpha} U^{\mu} \nabla_{\beta} U^{\nu} \right)$$
$$M^{\alpha\beta}{}_{\mu\nu} = c_1 g^{\alpha\beta} g_{\mu\nu} + c_2 \delta^{\alpha}{}_{\mu} \delta^{\beta}{}_{\nu} + c_3 \delta^{\alpha}{}_{\nu} \delta^{\beta}{}_{\nu} + c_4 U^{\alpha} U^{\beta} g_{\mu\nu}$$

- Terms not present can are due to them being integrated out by parts and unit vector constraints
- Can obtain equations of motion by varying the action
- We want to specify what the Aether field is before continuing - Khronometric Theory

Khronometric Theory

Khronometric Theory - Introduction

 Make the Aether Field orthogonal to hyper surfaces of constant time i.e T is a constant gauge

$$U_{\mu} = \frac{\partial_{\mu} T}{\sqrt{g^{\mu\nu}\partial_{\mu} T \partial_{\nu} T}}$$

- T is known as a Khronon
- We can now use our expression for the Aether Field, as well as using ADM to transform our Einstein - Aether action into that of Khronometric Theory

Khronometric Theory - The Action

$$S = \frac{1 - \beta}{16\pi G} \int dT d^3x N \sqrt{\gamma} \left(K_{ij} K^{ij} - \frac{1 + \lambda}{1 - \beta} K^2 + \frac{1}{1 - \beta} R^{(3)} + \frac{\alpha}{1 - \beta} a_i a^i \right)$$

- α, β and γ are combinations of c₁ to c₄. Can express without loss of generality.
- a is the acceleration of the aether flow
- N is the lapse, N is our shift vector
- We can vary this action by γ_{ij} , N and N_i to produce 3 sets of equations (Not shown here)

Blackholes in Khronometric Theory

Blackholes in Khronometric Theory

- Multiple Horizons
- Horizons are a low energy artefact, and excitations of sufficiently high momenta can escape
- Can we form a blackhole?
- Changes orbits of relativistic binaries

Image From: https://cdn.arstechnica.net

Blackholes in Khronometric Theory - Our Setup

- Spherical Symmetry, Static, Vacuum
- Shift Vector is equal to 0 (Gauge choice)
- Blackhole characterised by 3 parameters, A, B and F

$$N = A(t, r)^2$$

$$\gamma_{ij}dx^idx^j = F(t,r)^2 dr^2 + B(t,r)^2 r^2 d\Omega^2$$

$$\partial_t oldsymbol{u} + oldsymbol{M} \cdot \partial_r oldsymbol{u} = oldsymbol{S}$$

$$\partial_r^2 A = R$$

Conclusion

- We have looked at blackholes in Khronometric Theory
- Results still to come from simulation
- Khronometric Theory is a low energy limit of Horava Gravity
- Lorentz invariance only an approximate symmetry at low energies

Current and Future Work

Current - Gravitational
 Collapse in Spherical
 Symmetry and solving using
 PETSc

- Current Early Universe Bubble Collisions
- Cosmic Strings
- Higher Dimensional Spacetime
- f(R) Modified Gravity

