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‘The energy produced by the breaking down of the atom is a very poor
kind of thing. Anyone who expects a source of power from the
transformation of these atoms is talking moonshine’

Ernest Rutherford (1937), The Wordsworth Book of Humorous Quotations
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SL(2,Z) with q ≡ e2πiτ expansion

j(τ) = q−1 + 744 + 196884q + 21493760q2 + 864299970q3 + . . . (2)

This function is known as the Hauptmodul for the ‘genus 0’ group
SL(2,Z); all modular functions for SL(2,Z) are rational polynomials in
j(τ).
The numbers on the right are dimensions of irreducible representations of
the Monster group M, the largest finite sporadic group of order ≈ 8× 1053.
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Monstrous Moonshine - A Monster Module
The previous equalities suggest the existence of a graded Monster module
V \

V \ = V−1 ⊕ V1 ⊕ V2 ⊕ . . . (3)

whose graded dimension gives j(τ).

That is

j(τ)− 744 = dim(V−1)q−1 + dim(V1)q + dim(V2)q2 + . . . (4)
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Frenkel, Lepowsky and Meurman (FLM)1 constructed the Moonshine
module V \.

1Igor B Frenkel, James Lepowsky, and Arne Meurman. “A natural representation of
the Fischer-Griess Monster with the modular function J as character”. In: Proceedings
of the National Academy of Sciences 81.10 (1984), pp. 3256–3260.
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Frenkel, Lepowsky and Meurman (FLM)1 constructed the Moonshine
module V \.

In physical terms, they constructed a 2d chiral CFT (Monster CFT) from
bosonic strings on an orbifold of the Leech Lattice (even self-dual) torus.

They showed that this module has automorphism group M and graded
dimension j(τ)− 744. That is, the CFT has j(τ)− 744 as the partition
function and has M symmetry.

1Frenkel, Lepowsky, and Meurman, “A natural representation of the Fischer-Griess
Monster with the modular function J as character”.
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What is Moonshine?

Moonshine
Algebraic
Objects

Modular
Objects

Here we present moonshine in the context of string theory, where the
one-loop partition function has a world sheet with the topology of a torus.

Z (τ) = TrHCFT [qL0− c
24 ] q := e2πiτ .

The torus is described by a complex parameter τ in the upper half plane.
Two tori with moduli τ, τ ′ are conformally equivalent if their moduli are
related by

τ ′ = aτ + b
cτ + d ad − bc = 1

Therefore,
Z (γτ) = Z (τ), γ ∈ SL2(Z)
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The Partition Function and the Elliptic Genus
Mathieu Moonshine appears when considering the 2d conformal field
theory on the worldsheet describing superstrings propagating on K3.

We begin by considering the partition function:

Definition

The partition function for an N = (4, 4) theory is given by

Z (τ, z ; τ̄ , z̄) = TrH(qL0− c
24 q̄L̄0− c

24 y2J3
0 ȳ2J̄3

0 ) q = e2πiτ , y = e2πiz . (5)

Although the partition function is an important quantity containing the
information about all states, it depends on where we are in the
(80-dimensional) moduli space of K3, MK3. Too complicated to calculate
at generic points in MK3.
For some purposes it is convenient to consider a related quantity known as
the Elliptic Genus. This is moduli space independent.

εM(τ, z) := ZR̃(τ, z ; τ̄ , z̄ = 0) (6)
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0 ȳ2J̄3

0 ) q = e2πiτ , y = e2πiz . (5)

Although the partition function is an important quantity containing the
information about all states, it depends on where we are in the
(80-dimensional) moduli space of K3, MK3. Too complicated to calculate
at generic points in MK3.
For some purposes it is convenient to consider a related quantity known as
the Elliptic Genus. This is moduli space independent.

εM(τ, z) := ZR̃(τ, z ; τ̄ , z̄ = 0) (6)

Sam Fearn (Durham University) 4 / 11



The Elliptic Genus Of K3

Definition
The Elliptic Genus of an N = (4, 4) conformal field theory describing
strings on K3 is defined as

εK3(τ, z) := TrHR

(
(−1)F qL0− c

24 q̄L̄0− c̄
24 y2J3

0
)

(7)
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This is independent of q̄, becomes the Witten Index on the right2.

2Edward Witten. “Constraints on supersymmetry breaking”. In: Nuclear Physics B
202.2 (1982), pp. 253–316.
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(7)

This is independent of q̄, becomes the Witten Index on the right2.
The elliptic genus of K3 can be shown3 to be a weak Jacobi form of
weight 0 and index 1.
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The Elliptic Genus in N = 4 Characters

Alvarez-Gaumé and Freedman4 showed that a sigma model on a
hyperkähler manifold has N = 4 symmetry.

In terms of N = 4 characters we can expand the elliptic genus as

εK3(τ, z) = 24chR̃
l=0(τ, z) + Σ(τ)q

1
8 ĉhR̃

l=1/2(τ, z) (10)

where

Σ(τ) = q−
1
8 (−2 + 90q + 462q2 + 1540q3 + 4554q4 + . . .). (11)

These coefficients are all sums of dimensions of irreducible representations
of M24.

4Luis Alvarez-Gaume and Daniel Z Freedman. “Geometrical structure and ultraviolet
finiteness in the supersymmetric σ-model”. In: Communications in Mathematical
Physics 80.3 (1981), pp. 443–451.
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A Larger Algebra

Spindel et al.5 studied σ-models on group manifolds. They found that it
was possible to construct a model with N = 4 superconformal symmetry
with an SU(2)⊕ SU(2)⊕ U(1) Kac-Moody subalgebra and four free
fermions. This algebra is known as Aγ , or the Large N = 4 algebra.

The fermions and U(1) algebra can be decoupled, such that Aγ factorises

ChAγ = ChAQU × ChÃγ (12)

Characters for the Large N = 4 algebra are defined by

ChAγ ,R = TrHR (qL0−c/24z2T +3
0

+ z2T −3
0

− χiU0). (13)

In terms of the levels, c = 6k+k−

k , where k = k+ + k−.

5Philippe Spindel et al. “Complex structures on parallelised group manifolds and
supersymmetric σ-models”. In: Physics Letters B 206.1 (1988), pp. 71–74.
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An Index for Aγ

In the Mathieu Moonshine story, the moonshine only appears when we
consider the elliptic genus.

For theories with Aγ symmetry, if one tries to
perform the analogous operation of ‘forgetting the U(1)/SU(2) charge’ by
setting z+ = z− = χ = 1 in the character of Aγ ,

ChAγ ,R = TrHR (qL0−c/24z2T +3
0

+ z2T −3
0

− χiU0) (14)

one will always get 0, for both massless and massive representations.

This can be seen as a consequence of the 0-modes of the free fermions.

ChAQU ,R̃
∣∣∣
z+=z−

= 0 (15)
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Gukov’s Index
Gukov et al.6 used the fact that massive characters have a double zero at
z+ = z− while massless characters only have a single zero, to define a new
index which I refer to as the Gukov Index.

6Sergei Gukov et al. “An index for 2D field theories with large N = 4 superconformal
symmetry”. In: arXiv preprint hep-th/0404023 (2004).
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Gukov et al.6 used the fact that massive characters have a double zero at
z+ = z− while massless characters only have a single zero, to define a new
index which I refer to as the Gukov Index.
Definition
The Gukov Index of a theory with RR sector supercharacter Z is given by

IL(C) : = −z+
∂

∂z−
Z
∣∣∣∣
z+=z−=z

(16)

= Tr
(

2T−3
0 (−1)2T −3

0 qL0−c/24z2T +3
0 +2T −3

0
)

(17)

6Gukov et al., “An index for 2D field theories with large N = 4 superconformal
symmetry”.
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Charges of Gukov states
Using the characters calculated by Petersen and Taormina we can obtain6

−z+
∂

∂z−

∣∣∣∣
z+=z−=z

ChAγ ,R̃
0 (k+, k−, l+, l−, u) = (−1)2l−1qu2/kΘ−µ,k , (18)

6Gukov et al., “An index for 2D field theories with large N = 4 superconformal
symmetry”.
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We know some information about the states which contribute to the index
from the form of the theta function.

Θ−µ,k = qµ2/4k ∑
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From here we can read that contributing states must satisfy

L0 −
c
24 = (U0)2

k + 1
k
(

(T +3
0 + T−3

0 )2
)
, (20)

they’re massless states!
6Gukov et al., “An index for 2D field theories with large N = 4 superconformal
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Conclusions and Summary
• Monstrous Moonshine is, in part, the discovery that there exists a

world-sheet CFT with Monster symmetry, whose partition function is
given by j(τ)− 744.

• In the Mathieu Moonshine story, the relevant quantity to consider is
the elliptic genus of K3, an invariant of the moduli space. This index
gives the Witten Index of the right-movers, counting only massless
representations. When written in terms of N = 4 characters, it can
be seen that the states counted by the elliptic genus exhibit a
moonshine for the sporadic group M24.

• There exists a larger N = 4 algebra Aγ , which is found by considering
WZW models on Wolf spaces (certain group cosets). The Gukov
index is an invariant of such theories, generalising the elliptic genus.

• The Gukov index receives contributions only from massless states, but
unlike the elliptic genus, states throughout the representation.

• We’re currently studying the Gukov index of some particular models
in more detail.
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Thanks for listening!



A sporadic group
Theorem
The Classification of Finite Simple Groups.
This theorem states that all finite simple groups fall into one of the following families:

1 Cyclic groups of order n for n prime.
2 Alternating groups of degree at least 5.
3 Simple Lie type groups.
4 The 26 sporadic simple groups.

M24 is one of the sporadic finite simple groups. It is a subgroup of the Monster group
M, as shown below.
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The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24, 12, 8] code up to equivalency, G24. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define G24.
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The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24, 12, 8] code up to equivalency, G24. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define G24.

Lexicographic Code

c0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
c1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)
c2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1)
c3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1)

...
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The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24, 12, 8] code up to equivalency, G24. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define G24.

The Mathematical Game of Mogul

H H H H H H H H H H H H H H H H H H H H H H H H

H H T H H H T H H T H H H H H T H H H H H T H T
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The Golay Code
Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24, 12, 8] code up to equivalency, G24. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define G24.

The Golay code was used to transmit photos back from the Voyager
spacecraft.

Sam Fearn (Durham University) 2 / 12



M24

We can define M24 in many different ways, however one that suits us is
the following.

Definition

M24 := Aut(G24) (21)

That is, M24 = {τ ∈ S24| τ(c) ∈ G24 ∀c ∈ G24}

M24 has order 210 · 33 · 5 · 7 · 11 · 23 = 244823040
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Unitary HW Representations
In the Ramond sector, unitary highest weight representations are labelled
by the quantum numbers of the SU(2)’s l±R , the U(1) charge u and the
conformal dimension h.

T−−

T−+

T +− T ++

G−,Q−

G+,Q+G−k ,Q−k

G+k ,Q+k

|Ω+〉

We can see that there is no unique highest weight state, instead we have
a state |Ω+〉 which is a highest weight of SU(2)+ and satisfies

T +3
0 |Ω+〉 = l+

+ |Ω+〉 = l+
R |Ω+〉 (22)

T−3
0 |Ω+〉 = l−+ |Ω+〉 = (l−R − 1) |Ω+〉 (23)
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Massive and Massless Representations
Considering the norm |Q−k

0 G−k
0 |Ω+〉 | leads to a unitarity bound

hk ≥ u2 + (l+
+ + l−+ )2 + k+k−

4 (24)
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Massive and Massless Representations
Considering the norm |Q−k

0 G−k
0 |Ω+〉 | leads to a unitarity bound

hk ≥ u2 + (l+
+ + l−+ )2 + k+k−

4
(h − c

24)k ≥ u2 + (l+
+ + l−+ )2

(24)

When this bound is saturated, we call the representation a massless
representation. Representations which are not massless are massive.

Massive Representation Massless Representation
Sam Fearn (Durham University) 5 / 12



SU(2|2)
In the Ramond sector, the zero-mode subalgebra is given by the Lie
superalgebra SU(2|2).

such that

STr(M) : = Tr(A)− Tr(D) = 0 (25)
M + M‡ = 0. (26)

These conditions can be used to show that SU(2|2) has 7 bosonic
generators and 8 fermionic generators which satisfy the 0-mode algebra of
Aγ .
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SU(2|2)
In the Ramond sector, the zero-mode subalgebra is given by the Lie
superalgebra SU(2|2). This can be described7 by block matrices

M =
(

A B
C D

)
, (25)

with the elements of A,D (B,C) in the even (odd) part of a complex
Grassman algebra such that

STr(M) : = Tr(A)− Tr(D) = 0 (26)
M + M‡ = 0. (27)

These conditions can be used to show that SU(2|2) has 7 bosonic
generators and 8 fermionic generators which satisfy the 0-mode algebra of
Aγ .

7JF Cornwell. “Group theory in physics Vol III: supersymmetries and
infinite-dimensional algebras”. In: Techniques of Physics 10 (1989).
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Representations and Supertableaux
Representations of SU(2|2) can be classified by supertableaux8, in a
similar manner to SU(N) representation; we consider symmetrised and
anti-symmetrised tensor products of vectors. These vectors now live in a
graded vector space.

The bosonic subalgebra of SU(2|2) is SU(2)× SU(2)× U(1).
Representations of SU(2|2) can therefore be branched into irreducible
representations of SU(2)× SU(2)× U(1).

= ( , 1)⊕ ( , )⊕ (1, 1) (28)

8A Baha Balantekin and Itzhak Bars. “Dimension and character formulas for Lie
supergroups”. In: Journal of Mathematical Physics 22.6 (1981), pp. 1149–1162.
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Aγ in supertableaux

Ground level for k+ = 3,
k− = 2, l+ = l− = 1.

= 2( , 1)⊕ 2(1, )⊕ ( , )⊕ ( , ) (29)
In general the ground level is always described by a single tableau

ChAγ ,R
0 =

(
2l−

2l+ )
qh−c/24 + . . .

(30)

Sam Fearn (Durham University) 8 / 12



Aγ in supertableaux

Ground level for k+ = 3,
k− = 2, l+ = l− = 1.

= 2( , 1)⊕ 2(1, )⊕ ( , )⊕ ( , ) (29)

In general the ground level is always described by a single tableau

ChAγ ,R
0 =

(
2l−

2l+ )
qh−c/24 + . . .

(30)

Sam Fearn (Durham University) 8 / 12



Aγ in supertableaux

Ground level for k+ = 3,
k− = 2, l+ = l− = 1.

= 2( , 1)⊕ 2(1, )⊕ ( , )⊕ ( , ) (29)
In general the ground level is always described by a single tableau

ChAγ ,R
0 =

(
2l−

2l+ )
qh−c/24 + . . .

(30)

Sam Fearn (Durham University) 8 / 12



Gukov Index for Tableau
One can calculate the Gukov index for a supertableau and show the
following results:

IL
(

n

m )
= (−1)n(z−m−n−1 − zm+n+1)

(31)

IL
( )

= 0

(32)

These are the only possible types of supertableau for SU(2|2), so all
contributions to the Gukov index of an Aγ representation comes from
tableaux of the first type. The first type of tableau is the massless
SU(2)× SU(2) multiplet, the second type is the massive multiplet.
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Hidden Physics?
Recall:

• Monstrous Moonshine was hidden in the partition function of a
particular CFT

• The Elliptic Genus of K3, which revealed Mathieu Moonshine when
written in terms of N = 4 characters, described the right-moving
ground states of the theory.
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Hidden Physics?
Recall:

• Monstrous Moonshine was hidden in the partition function of a
particular CFT

• The Elliptic Genus of K3, which revealed Mathieu Moonshine when
written in terms of N = 4 characters, described the right-moving
ground states of the theory.

Umbral moonshine can also be seen in terms of the elliptic genus of K3:
Recall that we split the elliptic genus into massless and massive characters
of N = 4. We can instead split the elliptic genus into a part corresponding
to some surface singularities of the K3 and the remaining ‘Moonshine’
part which encodes the moonshine form9.

9Miranda CN Cheng and Sarah Harrison. “Umbral Moonshine and K3 Surfaces”. In:
arXiv preprint arXiv:1406.0619 (2014).
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Hidden Physics
Kachru et al.10 consider 3d gravity theories by for instance compactifying
the Type II string on K3xT 3. The moduli space of such theories can be
thought of as the space of 32-dimensional even unimodular lattices of
signature (8,24). In a neighbourhood of some particular points in this
moduli space the theory has Umbral symmetry.

10Shamit Kachru, Natalie M Paquette, and Roberto Volpato. “3D String Theory and
Umbral Moonshine”. In: arXiv preprint arXiv:1603.07330 (2016).
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Mathieu and Monstrous Moonshine
• Both moonshines involve the representation theory of finite simple

groups and objects with particular modular transformations.

• In both cases we have been able to learn more about the
representations involved by twisting the functions involved.

• We can explain Monstrous Moonshine in terms of a Vertex Operator
Algebra and we expect to be able to explain Mathieu Moonshine in
terms of a Vertex Operator Superalgebra

• Monstrous Moonshine involved modular functions (in fact
Hauptmodul) but Mathieu Moonshine (and Umbral Moonshine)
involves mock-modular forms.

• Monstrous moonshine can be explained in terms of a string
propagating on an orbifold of the ‘Leech Torus’ R24/Λ where the
j-invariant describes the partition functions for the theory. In Mathieu
Moonshine we don’t consider the full partition function but the
elliptic genus which only counts half BPS states (right moving ground
states).
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Hauptmodul) but Mathieu Moonshine (and Umbral Moonshine)
involves mock-modular forms.

• Monstrous moonshine can be explained in terms of a string
propagating on an orbifold of the ‘Leech Torus’ R24/Λ where the
j-invariant describes the partition functions for the theory. In Mathieu
Moonshine we don’t consider the full partition function but the
elliptic genus which only counts half BPS states (right moving ground
states).
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