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Issues with vacuum energy

QFT predicts a non-trivial vacuum energy density for each particle
species → not a problem in “ordinary” QFT as only energy
differences are observable.
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Issues with vacuum energy

QFT predicts a non-trivial vacuum energy density for each particle
species → not a problem in “ordinary” QFT as only energy
differences are observable.

However, it becomes relevant when one introduces gravity
→ gravity is sensitive to absolute energy densities!

Requiring that the equivalence principle holds implies that vacuum
energy should gravitate → identify this with cosmological constant.
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Vastness of vacuum energy - solution through

renormalisation?

Problem: Naive calculations of zero-point energy contributions from
each particle species suggest a vast vacuum energy.
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Vastness of vacuum energy - solution through

renormalisation?

Problem: Naive calculations of zero-point energy contributions from
each particle species suggest a vast vacuum energy.

Solution (?): Add a bare-term Λ0 to Einstein’s equation
→ renormalises cosmological constant, such that the net contribution
is finite

Λren = Λ0 + 〈ρm〉 (1)

Current data requires Λren ∼ meV 4 [1]
→ Significant fine-tuning required. Problematic, but not disastrous!
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Radiative instability of the vacuum energy

Loop corrections in QFT render the net vacuum energy radiatively

unstable.
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Radiative instability of the vacuum energy

Loop corrections in QFT render the net vacuum energy radiatively

unstable.

Consequently, the cosmological constant does not have a stable value
even in the regime of the Standard Model → CCP!
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The “Fab-Four”

A compelling solution found through “self-tuning” Horndeski theory
→ Fab-Four theory [2]
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The “Fab-Four”

A compelling solution found through “self-tuning” Horndeski theory
→ Fab-Four theory [2]

LFab =
√−g

[

VG (φ)R + VR(φ)Ĝ + VJ(φ)Gµν∇µφ∇νφ

+ VP(φ)Pµναβ∇µφ∇αφ∇ν∇βφ
]

(2)

[where Ĝ = R2
− 4Rµν Rµν + RµναβRµναβ is the “Gauss-Bonnet” combination, and

Pµναβ := (∗ ∗ R)µναβ = −
1
4
εµνρσRρσλγ ελγαβ is the double-dual of the Riemann tensor.]
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“screen” effects of vacuum energy → vacuum energy does not
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A compelling solution found through “self-tuning” Horndeski theory
→ Fab-Four theory [2]

LFab =
√−g

[

VG (φ)R + VR(φ)Ĝ + VJ(φ)Gµν∇µφ∇νφ

+ VP(φ)Pµναβ∇µφ∇αφ∇ν∇βφ
]

(2)

[where Ĝ = R2
− 4Rµν Rµν + RµναβRµναβ is the “Gauss-Bonnet” combination, and

Pµναβ := (∗ ∗ R)µναβ = −
1
4
εµνρσRρσλγ ελγαβ is the double-dual of the Riemann tensor.]

One introduces a “self-tuning”, time-dependent scalar field φ(t) to
“screen” effects of vacuum energy → vacuum energy does not

gravitate!

Importantly, Weinberg’s famous no-go theorem is avoided by breaking
Poincaré invariance at the level of the self-adjusting scalar field → φ

is allowed to evolve in time.
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Can the Fab-Four be generalised?

Any two self-tuning Lagrangians related by a Weyl rescaling
gµν → A(φ)gµν lie within the same class of self-tuning theories.
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Can the Fab-Four be generalised?

Any two self-tuning Lagrangians related by a Weyl rescaling
gµν → A(φ)gµν lie within the same class of self-tuning theories.

Therefore, to generalise, we introduce a direct coupling between φ(t)
and matter → matter “sees” a different geometry to that described
by Horndeski theory.

In doing so we require a transformation between gravitational &
physical geometries → most general relation between the two
adhering to causality and the weak equivalence principle is a disformal
transformation [3]

ḡµν(x) = A2(φ,X )
[

gµν(x) + B2(φ,X )∂µφ∂νφ
]

(3)

[where X = −
1
2
gµν ∂µφ∂νφ.]
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A disformal self-tuning generalisation of Fab-Four theory

We construct the action for our disformal theory in the Jordan frame
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A disformal self-tuning generalisation of Fab-Four theory

We construct the action for our disformal theory in the Jordan frame

S = SJ [ḡµν , φ] + Sm [ḡµν , ψi ] (4)

Simplifies analysis and corresponds to the physical frame → matter
follows the geodesics defined by the physical metric ḡµν , and the
energy-momentum tensor is covariantly conservered, ∇̄µT̄µν = 0..
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What is self-tuning?

We are yet to define what “self-tuning” means in the context of
theories of gravity. By self -tuning it is meant that the theory satisfies
the following set of constraints (a so-called self-tuning filter):
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What is self-tuning?

We are yet to define what “self-tuning” means in the context of
theories of gravity. By self -tuning it is meant that the theory satisfies
the following set of constraints (a so-called self-tuning filter):

1 The theory should admit a Minkowski vacuum (in the Jordan frame)
regardless of the net value of the cosmological constant;

2 This should remain true before and after any phase transition in which the
cosmological constant “jumps” (instantaneously) by a finite amount;

3 The theory should permit a non-trivial cosmology (a vital requirement in
order for the theory to match observational data).
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Cosmological set-up of the theory

The background geometries in the Horndeski (HF) and Jordan (JF)
frames are taken to be FLRW. In particular, the geometry in the JF
should be asymptotically Minkowski. Hence,
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Cosmological set-up of the theory

The background geometries in the Horndeski (HF) and Jordan (JF)
frames are taken to be FLRW. In particular, the geometry in the JF
should be asymptotically Minkowski. Hence,

ds2 = gµν(x)dxµdxν = −N2(t)dt2 + a2(t)γij(x)dx idx j (5)

ds̄2 = ḡµν(x)dxµdxν = −dt2 + ā2(t)γij(x)dx idx j (6)

gµν (x) : Horndeski-frame metric (describes geometry defined by gravitation).

ḡµν (x) : Jordan-frame metric (describes physical geometry on which matter propagates).
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Constructing the theory on an FRW background

We evaluate the Horndeski Lagrangian in the HF, subsequently
transforming the relevant dynamical variables into the JF, such that it
is of the form
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Constructing the theory on an FRW background

We evaluate the Horndeski Lagrangian in the HF, subsequently
transforming the relevant dynamical variables into the JF, such that it
is of the form

L
FRW

= ā3
3

∑

i=0

Zi(ā, φ, φ̇, φ̈)H̄ i (7)
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Applying the self-tuning filter

First, consider FLRW in vacuo and identify the cosmological constant
with vacuum energy, i.e. Λ = 〈ρm〉.
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First, consider FLRW in vacuo and identify the cosmological constant
with vacuum energy, i.e. Λ = 〈ρm〉.

Cosmological vacuum solutions should be Ricci flat → “on-shell-in-ā”
conditions

H̄2 = − k

ā2
⇒ ˙̄a =

√
−k (8)

¨̄a = 0 (9)

W. Emond (University of Nottingham) Disformally Self-Tuning Gravity YTF 9, 2017 13 / 22



Applying the self-tuning filter

First, consider FLRW in vacuo and identify the cosmological constant
with vacuum energy, i.e. Λ = 〈ρm〉.

Cosmological vacuum solutions should be Ricci flat → “on-shell-in-ā”
conditions

H̄2 = − k

ā2
⇒ ˙̄a =

√
−k (8)

¨̄a = 0 (9)

We assume that φ(t) is continuous, but that φ̇, φ̈ and
...
φ can be

discontinuous, compensating for changes in Λ due to phase transitions
in matter sector.
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Preliminary construction of a self-tuning Lagrangian

Self-tuning conditions require the “on-shell-in-ā” Lagrangian, Lk is
equivalent to a total derivative.
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Preliminary construction of a self-tuning Lagrangian

Self-tuning conditions require the “on-shell-in-ā” Lagrangian, Lk is
equivalent to a total derivative.

We can therefore construct a preliminary definition for a self-tuning
Lagrangian

L̃ = ā3
3

∑

i=0

Z̃i H̄
i ≡ ā3

3
∑

i=1

Z̃i

[

H̄ i −
( s

ā

)i
]

(10)
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General form of self-tuning Lagrangian

A priori, L̃ not a necessary condition → possibly other equivalent
Lagrangians, with Zi = Z̃i + ∆Zi , that admit same set of self-tuning
solutions.

W. Emond (University of Nottingham) Disformally Self-Tuning Gravity YTF 9, 2017 15 / 22



General form of self-tuning Lagrangian

A priori, L̃ not a necessary condition → possibly other equivalent
Lagrangians, with Zi = Z̃i + ∆Zi , that admit same set of self-tuning
solutions.

However, we require that the “tilded” and “untilded” systems each
have equations of motion that give the same dynamics when
generically on-shell:

W. Emond (University of Nottingham) Disformally Self-Tuning Gravity YTF 9, 2017 15 / 22



General form of self-tuning Lagrangian

A priori, L̃ not a necessary condition → possibly other equivalent
Lagrangians, with Zi = Z̃i + ∆Zi , that admit same set of self-tuning
solutions.

However, we require that the “tilded” and “untilded” systems each
have equations of motion that give the same dynamics when
generically on-shell:

H = −ρm , εφ = 0 ⇐⇒ H̃ = −ρm , ε̃φ = 0 (11)

W. Emond (University of Nottingham) Disformally Self-Tuning Gravity YTF 9, 2017 15 / 22



General form of self-tuning Lagrangian

A priori, L̃ not a necessary condition → possibly other equivalent
Lagrangians, with Zi = Z̃i + ∆Zi , that admit same set of self-tuning
solutions.

However, we require that the “tilded” and “untilded” systems each
have equations of motion that give the same dynamics when
generically on-shell:

H = −ρm , εφ = 0 ⇐⇒ H̃ = −ρm , ε̃φ = 0 (11)

It turns out that for the theory to be self-tuning it must be that
H = H̃ and εφ = ε̃φ. Hence, Zi = Z̃i .
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Self-tuning forms of the Horndeski functions

We observe that the functions Zi can be expressed as,
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Self-tuning forms of the Horndeski functions

We observe that the functions Zi can be expressed as,

Zi(ā, φ, φ̇, φ̈) = X (φ, φ̇, φ̈) − k

ā2
Y (φ, φ̇, φ̈) (12)

Two Lagrangians differing by a total derivative describe the same
theory → enables derivation of a set of equations for Xi and Yi .

These equations can be used to determine the self-tuning form of
each of the Horndeski functions K , Gi (i = 3, 4, 5).
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Analysis - Reproducing the Fab Four and its conformal cousin

In the case where Ā = 1 (with N = 1) the theory reproduces the
Fab-Four Lagrangian (a crucial requirement for consistency).
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Analysis - Reproducing the Fab Four and its conformal cousin

In the case where Ā = 1 (with N = 1) the theory reproduces the
Fab-Four Lagrangian (a crucial requirement for consistency).

In the conformal case, Ā = Ā(φ), the theory reproduces a Lagrangian
in the same class of self-tuning theories as the Fab Four.
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Analysis - Most general disformal case

In the most general case, where Ā = Ā(φ, X̄ ) and B̄ = B̄(φ, X̄ ) (in
principle), requiring self-tuning enforces the constraint:
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Analysis - Most general disformal case

In the most general case, where Ā = Ā(φ, X̄ ) and B̄ = B̄(φ, X̄ ) (in
principle), requiring self-tuning enforces the constraint:

∂Ā

∂X̄
= 0 (13)

As a consequence, the Horndeski Lagrangian (evaluated on an FRW
background) can be expressed in a self-tuning form:

LFRW =ā
3

»

N
√

2XV
′

1 − 2V1
s

ā
+

“

3Ḡ5 − 3
√

2XG5 − V2

” “

s

ā

”2
–»

H̄ − s

ā

–

+ ā
3

»

N
√

2XV
′

2 + 6NG4 − 3N
√

2XḠ5,φ + 2V1

–»

H̄
2 −

“

s

ā

”2
–

+ 2ā3 X
√

2X

N2
G5,X

»

H̄
3 −

“

s

ā

”3
–

(14)
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Analysis - Most general disformal case (cont’d)

A significant result: if we can find solutions for the Horndeski func-
tions K , Gi (i = 3, 4, 5) then the theory is guaranteed to be self-tuning!
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Analysis - Most general disformal case (cont’d)

A significant result: if we can find solutions for the Horndeski func-
tions K , Gi (i = 3, 4, 5) then the theory is guaranteed to be self-tuning!

Caveat: the system of differential equations for K , Gi (i = 3, 4, 5)
cannot be solved in general and must be done so on a case-by-case

basis.
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Summary

It is possible to generalise the Fab-Four to include disformal couplings
of matter to gravity in which φ(t) can directly interact with matter.
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Outlook

No clear path for constructing covariant description of the theory as
of yet (cannot use same approach as in Fab-Four case due to
additional disformal contributions).
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Summary

It is possible to generalise the Fab-Four to include disformal couplings
of matter to gravity in which φ(t) can directly interact with matter.

However, the equations for the Horndeski functions cannot be solved
in general, but can be on a case-by-case basis.

Outlook

No clear path for constructing covariant description of the theory as
of yet (cannot use same approach as in Fab-Four case due to
additional disformal contributions).

Possible future research: use of present analysis as a starting point in
the construction of a “beyond Horndeski” theory.
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Thank you for your time.

Any questions?
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