THE \mathcal{V} KID ON THE BLOCK

Sterile Neutrinos at the eV Scale and NuSTORM

Matheus Hostert

Peter Ballett & Silvia Pascoli

CONTENTS

Neutrino Oscillations

.

.

• eV Scale Sterile Neutrinos

NEUTRINO OSCILLATIONS

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \left\langle \nu_{\beta} | \nu_{\alpha}(t) \right\rangle \right|^{2} \\ = \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} e^{-i(E_{k} - E_{j})t}$$

3 NEUTRINO SCENARIO — $\theta_{12}, \theta_{13}, \theta_{23}, \delta, \Delta m_{21}^2, \Delta m_{31}^2$

FLAVOUR FRACTION OF A NEUTRINO BEAM

FLAVOUR FRACTION OF A NEUTRINO BEAM

SHORT BASELINE ANOMALIES

MiniBoone Low Energy Excess

$\nu STORM$

The Ultimate Test

A u beam

3 + N MODELS

Standard Model Singlet

New mass eigenstates are mostly sterile.

PRODUCTION DECOHERENCE EFFECTS

. . . .

• •

. .

For oscillations to happen:

 $\delta x \delta p > 1$

.

$$\frac{\delta x}{L} \ll 1$$

$$\frac{\delta p}{P} > \frac{1}{P\delta x} \gg \frac{1}{LP} = \frac{\Delta m^2}{4\pi E}$$

$$|
u_{lpha}(ec{x},t)
angle = \sum_{i} U^*_{lpha i} \Psi_i(ec{x},t) |
u_i
angle$$
 Can use a wavepacket approach!

$$\Psi_i(\vec{x},t) = \int \frac{d^3p}{(2\pi)^{3/2}} f_i^S(\vec{p}-\vec{p_i}) e^{i\vec{p}.\vec{x}-iE_i(p)t}$$

DECOHERENCE EFFECTS – PRODUCTION

SIMPLEST 3+1 MODEL $\Delta m_{41}^2 \approx \mathcal{O}(1) \text{ eV}^2 \gg \Delta m_{31}^2, \Delta m_{21}^2$

$$P(\nu_e \to \nu_\mu) = \sin^2 2\theta_{e\mu} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

Can treat it as a 1+1 model!

$$P(\overline{\nu}_{\mu} \to \overline{\nu}_{\mu}) = 1 - \sin^2 2\theta_{\mu\mu} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

SIMPLEST 3+2 NEUTRINOS

$$P_{\nu_e \to \nu_{\mu}}^{3+2} = 4|U_{\mu4}|^2|U_{e4}|^2\sin^2\Delta_{41} + 4|U_{\mu5}|^2|U_{e5}|^2\sin^2\Delta_{51} + 8|U_{\mu4}U_{e4}U_{\mu5}U_{e5}|\sin\Delta_{41}\sin\Delta_{51}\sin(\Delta_{41}-\eta),$$

CP phases

3+2 CP VIOLATION PHASE SENSITIVITY

 η

WHAT CAN NUSTORM DO?

- ► Look for oscillations in a variety of channels.
- ► If it doesn't see anything, bound 3+N model parameters.
- ► Measure cross sections at the near detector
- ► R&D for muon storage rings

Neutrino Factories Muon Colliders

STERILE NEUTRINO SEARCHES

Standard Model Singlet

Mass not protected by any symmetry

It is possible to look for steriles at current neutrino experiments, so why not.

Thank you for listening!