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Introduction
Motivation

Dynamics of finite temperature field theory hard to analyze

Problem simplifies if we focus on long-wavelength fluctuations
(compared to scale set by T ) - expansion parameter: k/T

Description of the system in terms of fundamental
hydrodynamic variables: energy ε and fluid velocity uµ

Few undetermined transport coefficients fixed by underlying
QFT (related to Green’s functions by Kubo’s formulas)

Relation to holography:

Calculation of transport coefficients for strongly coupled field
theories 1.

“Hydrodynamic expansion” for gravity: fluid/gravity
correspondence 2.

1[Kovtun et al. ’05, · · · ]
2[Bhattacharyya et al. ’08 (1), Bhattacharyya et al. ’08(2), · · · ]
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Introduction
Motivation

Prescription for obtaining boundary thermoelectric DC
conductivities from Navier-Stokes on black hole horizons3:

For general holographic lattice, reduced set of boundary
perturbations satisfy Navier-Stokes equations on horizon,
whose geometry is generally different from UV geometry.

Obtain horizon currents and boundary current fluxes and thus
the boundary thermoelectric DC conductivity.

In the hydrodynamic limit, horizon geometry and currents
directly related to boundary data4.

Motivation from experiment:

Recent experiments with strained graphene 5.

3[Donos et al. ’15, Banks et al. ’15]

4[Donos et al. ’16]
5[Si et al. ’16, · · · ]

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Introduction
Motivation

Prescription for obtaining boundary thermoelectric DC
conductivities from Navier-Stokes on black hole horizons3:

For general holographic lattice, reduced set of boundary
perturbations satisfy Navier-Stokes equations on horizon,
whose geometry is generally different from UV geometry.

Obtain horizon currents and boundary current fluxes and thus
the boundary thermoelectric DC conductivity.

In the hydrodynamic limit, horizon geometry and currents
directly related to boundary data4.

Motivation from experiment:

Recent experiments with strained graphene 5.

3[Donos et al. ’15, Banks et al. ’15]

4[Donos et al. ’16]
5[Si et al. ’16, · · · ]

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Introduction
Motivation

Prescription for obtaining boundary thermoelectric DC
conductivities from Navier-Stokes on black hole horizons3:

For general holographic lattice, reduced set of boundary
perturbations satisfy Navier-Stokes equations on horizon,
whose geometry is generally different from UV geometry.

Obtain horizon currents and boundary current fluxes and thus
the boundary thermoelectric DC conductivity.

In the hydrodynamic limit, horizon geometry and currents
directly related to boundary data4.

Motivation from experiment:

Recent experiments with strained graphene 5.

3[Donos et al. ’15, Banks et al. ’15]

4[Donos et al. ’16]
5[Si et al. ’16, · · · ]

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Introduction
Motivation

Prescription for obtaining boundary thermoelectric DC
conductivities from Navier-Stokes on black hole horizons3:

For general holographic lattice, reduced set of boundary
perturbations satisfy Navier-Stokes equations on horizon,
whose geometry is generally different from UV geometry.

Obtain horizon currents and boundary current fluxes and thus
the boundary thermoelectric DC conductivity.

In the hydrodynamic limit, horizon geometry and currents
directly related to boundary data4.

Motivation from experiment:

Recent experiments with strained graphene 5.

3[Donos et al. ’15, Banks et al. ’15]
4[Donos et al. ’16]

5[Si et al. ’16, · · · ]

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Introduction
Motivation

Prescription for obtaining boundary thermoelectric DC
conductivities from Navier-Stokes on black hole horizons3:

For general holographic lattice, reduced set of boundary
perturbations satisfy Navier-Stokes equations on horizon,
whose geometry is generally different from UV geometry.

Obtain horizon currents and boundary current fluxes and thus
the boundary thermoelectric DC conductivity.

In the hydrodynamic limit, horizon geometry and currents
directly related to boundary data4.

Motivation from experiment:

Recent experiments with strained graphene 5.

3[Donos et al. ’15, Banks et al. ’15]
4[Donos et al. ’16]

5[Si et al. ’16, · · · ]

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Introduction
Motivation

Prescription for obtaining boundary thermoelectric DC
conductivities from Navier-Stokes on black hole horizons3:

For general holographic lattice, reduced set of boundary
perturbations satisfy Navier-Stokes equations on horizon,
whose geometry is generally different from UV geometry.

Obtain horizon currents and boundary current fluxes and thus
the boundary thermoelectric DC conductivity.

In the hydrodynamic limit, horizon geometry and currents
directly related to boundary data4.

Motivation from experiment:

Recent experiments with strained graphene 5.

3[Donos et al. ’15, Banks et al. ’15]
4[Donos et al. ’16]
5[Si et al. ’16, · · · ]

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Conformal Hydrodynamics
Background Metric
Perturbation
Navier-Stokes Equations

Table of Contents

1 Introduction/Motivation
Introduction
Motivation

2 Hydrodynamic Limit of CFTs and Navier-Stokes Equations
Conformal Hydrodynamics
Background Metric
Perturbation
Navier-Stokes Equations

3 AC Thermal Conductivity on Curved Manifolds
Thermal Conductivity
AC Thermal Conductivity on Curved Manifolds

4 Summary and Outlook

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Conformal Hydrodynamics
Background Metric
Perturbation
Navier-Stokes Equations

We express the stress tensor in terms of the hydrodynamic
variables ε, uµ.

In first-order hydrodynamics we have

Tµν = εuµuν +
[
P(ε)− ζb(ε)Dλu

λ
]

(gµν + uµuν)− 2η(ε)σµν (1)

where the shear tensor is

σµν = D(µuν) + u(µu
λDλuν) − (gµν + uµuν)

Dλu
λ

d − 1
(2)

P is the pressure, ζb is the bulk viscosity and η is the shear
viscosity.

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Conformal Hydrodynamics
Background Metric
Perturbation
Navier-Stokes Equations

We express the stress tensor in terms of the hydrodynamic
variables ε, uµ. In first-order hydrodynamics we have

Tµν = εuµuν +
[
P(ε)− ζb(ε)Dλu

λ
]

(gµν + uµuν)− 2η(ε)σµν (1)

where the shear tensor is

σµν = D(µuν) + u(µu
λDλuν) − (gµν + uµuν)

Dλu
λ

d − 1
(2)

P is the pressure, ζb is the bulk viscosity and η is the shear
viscosity.

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Conformal Hydrodynamics
Background Metric
Perturbation
Navier-Stokes Equations

We express the stress tensor in terms of the hydrodynamic
variables ε, uµ. In first-order hydrodynamics we have

Tµν = εuµuν +
[
P(ε)− ζb(ε)Dλu

λ
]

(gµν + uµuν)− 2η(ε)σµν (1)

where the shear tensor is

σµν = D(µuν) + u(µu
λDλuν) − (gµν + uµuν)

Dλu
λ

d − 1
(2)

P is the pressure, ζb is the bulk viscosity and η is the shear
viscosity.

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Conformal Hydrodynamics
Background Metric
Perturbation
Navier-Stokes Equations

The stress tensor of a QFT must satisfy the Ward identities

DµT
µν = 0 (3)

If the theory is conformal, we also have

Tµ
µ = 0 (4)

Imposing the tracelessness condition (4) on the stress tensor (1),
we find ζb = 0, ε = (d − 1)P, and so we get

Tµν = P (gµν + duµuν)− 2ησµν (5)

By dimensional analysis we have P = c0T
d and η = c1T

d−1,
where c0 and c1 depend on the microscopics of the CFT.
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In thermal equilibrium, we take the background metric to be static

ds2 = −dt2 + gij(x)dx idx j (6)

We can think of the harmonic expansion of gij around the flat
metric ηij , then the hydrodynamic regime is defined by kT−1 � 1,
with k being the largest wavenumber.

In order to obtain finite conductivities, momentum should
dissipate. This implies that the spatial metric gij should not have
any (conformal) Killing vectors.

For example, we can take gij to be periodic in the spatial directions
(i.e. metric on torus).
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We perturb the CFT by introducing a thermal gradient
ζ ≡ −T−1dT . We take ζ to be a closed 1-form, so locally we can
write ζ = dφ, where φ = − lnT .

The perturbed metric takes the
form

ds2 = −(1− 2φ)dt2 + gij(x)dx idx j (7)

and the perturbed fluid velocity becomes

ut = −(1− φ), uj = δuj (8)

This gives rise to a temperature variation around the equilibrium
value T = T0 + δT .
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Ward Identities ⇒ Navier-Stokes Equations

We substitute the above in the stress tensor Tµν (eq. (5)) and
keep terms linear in the perturbations.

The Ward identities (3)
lead to the following forced Navier-Stokes equations

T0∂tδui − 2
c1

dc0

(
∇j∇(jδui) −

1

d − 1
∇i∇jδu

j

)
+∇iδT = T0ζi

(9a)

(d − 1)T−1
0 ∂tδT +∇iδu

i = 0
(9b)

∇i is the covariant derivative with respect to gij .

Only the ratio c1/dc0 = η0/s0 depends on the microscopic
CFT.
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The thermal conductivity (matrix) κij describes the linear response
of the system to a temeperature gradient source.

It is defined by
the relation

~Q = −κ · ~∇T , (10)

where the heat current density is given by

Q i = −√gT i
t (11)

In terms of our perturbations we have

c0dT
d−1
0

√
gδui = κijζj (12)

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Thermal Conductivity
AC Thermal Conductivity on Curved Manifolds

The thermal conductivity (matrix) κij describes the linear response
of the system to a temeperature gradient source. It is defined by
the relation

~Q = −κ · ~∇T , (10)

where the heat current density is given by

Q i = −√gT i
t (11)

In terms of our perturbations we have

c0dT
d−1
0

√
gδui = κijζj (12)

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Thermal Conductivity
AC Thermal Conductivity on Curved Manifolds

The thermal conductivity (matrix) κij describes the linear response
of the system to a temeperature gradient source. It is defined by
the relation

~Q = −κ · ~∇T , (10)

where the heat current density is given by

Q i = −√gT i
t (11)

In terms of our perturbations we have

c0dT
d−1
0

√
gδui = κijζj (12)

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Thermal Conductivity
AC Thermal Conductivity on Curved Manifolds

After performing a Weyl rescaling we can redefine the coordinates
and the perturbations in order to make them dimensionless. We
also assume a time dependence of the form exp(−iωτ).

The
Navier-Stokes equations (9) take the form

−iωβi − 2∇j∇(jβi) + ∂iσ = ξi (13a)

∇iβ
i = 0 (13b)

where we have traded the perturbations (δui , δT , ζi ) for (βi , σ, ξi )
respectively.

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Thermal Conductivity
AC Thermal Conductivity on Curved Manifolds

After performing a Weyl rescaling we can redefine the coordinates
and the perturbations in order to make them dimensionless. We
also assume a time dependence of the form exp(−iωτ). The
Navier-Stokes equations (9) take the form

−iωβi − 2∇j∇(jβi) + ∂iσ = ξi (13a)

∇iβ
i = 0 (13b)

where we have traded the perturbations (δui , δT , ζi ) for (βi , σ, ξi )
respectively.

Vaios Ziogas Thermal Conductivity on Curved Manifolds



Introduction/Motivation
Conformal Hydrodynamics and Navier-Stokes

AC Thermal Conductivity on Curved Manifolds
Summary and Outlook

Thermal Conductivity
AC Thermal Conductivity on Curved Manifolds

AC Thermal Conductivity

We can now write (13a) in the following way

(D − iω)βi = Gξi (14)

where the linear operators

Dβi = −2∇j∇(jβi) + 2∇i�
−1
(
∇(k∇l)∇(kβl)

)
Gξi = ξi −∇i�

−1
(
∇lξ

l
) (15)

act on closed 1-forms ξi and co-closed 1-forms βi .

Inverting (14) we obtain the AC thermal conductivity.
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We note that

From (14) we can see that the poles of the retarded Green’s
function are given by eigenvalues of D
All poles lie on the negative imaginary axis, so we don’t get
instabilities.

Taking ω → 0 we obtain the DC conductivity.

In cases of interest, we can compute the conductivity explicitly:

For perturbative lattices, i.e. perturbatively in λ for metrics
g̃ij = δij + λhij + · · · with hij periodic.

For one-dimensional lattices ds2 = γ(x)dx2 + gab(x)dxadxb,
i.e. when our system depends only on 1 coordinate x .
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Summary:

We have derived the Navier-Stokes equations sourced by a thermal
gradient ζ, in the hydrodynamic limit of an arbitrary CFT on
curved space. We used this set of equations to obtain a general
formula for the AC thermal conductivity.

Outlook:

Diffusion: “Derive” Fick’s Law δui ∼ ∇iδT from (9a) and
generalize Einstein relations D ∼ κ
QFT?

Thermoelectric conductivities?

Holography?
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Thank you for your attention
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