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The equation of motion for Hydrodynamics is the conservation
equation

V. T" =0 (1)
where TH = TH (e, P,ut) with € the energy density, P the
Pressure, and u* the fluid velocity. For a perfect fluid

T, = (c+ Puru’ — Py, (2)

For a non-ideal fluid, we include every possible tensor
combination of 9, u* and n*” with co-efficients c;.

TH = Th +c10*u” + 0" u 4 st Opu® + cqutu” Opu® + ...

(3)
Generally symmetries of the theory can be used to constrain
these co-efficients c;.
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itself in 0*u” << 1 when u* is slowly varying.
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For example, in a conformal theory all these co-efficients (at
order 0"u") are contrained to 7 the shear viscousity

TH — TiZ:al —not’ + ... (4)

uy v Vo b 2(p o,V uv «a
where o/ = (9, u” + 0"ut — g (u'u” + nH")0au).
In general we can include all derivatives of u*

idea

T = TH 4+ O(~ 3"u”) + O(~ (0"u”)?) + ...  (5)

» This series is known as the Gradient Expansion and orders
itself in 0*u” << 1 when u* is slowly varying.

» The co-efficients ¢; are known as transport co-efficients
and uniquely specify our theory.
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Figure: Head-on and Side profiles for a Lead-Lead collision. The
overlapping region results in an energy density that evolves
longitudinally according to hydrodynamics.
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Bjorken Flow

» This energy density Ty = € is a function of only the
proper time, and the form is known to all orders:

() = T_4/3(€0 +e7 P 43 4+ ) (6)

» Each new factor of 7=%/3 comes from exactly each new
order of 0"u” in the gradient expansion, and the
transport co-efficients are related to each ¢;.

» To gain some understanding of this evolving system
analytically, we need a way to calculate the energy
co-efficients for a QCD-like theory at Strong Coupling.

» N =4 SYM (a QCD-like theory) can be re-written at
infinite coupling as a gravitational theory.



The Fluid-Gravity correspondence

We can perform classical gravity calculations to find strongly
coupled QFT results.
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Figure: Some Gauge theories and Gravity theories are conjectured
to be the same theory under a field redefinition.
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The Fluid-Gravity Correspondence

The geometry that is dual to Bjorken Flow Hydrodynamics in
N = 4 SYM at infinite coupling is given by
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where 7 is the radial distance towards the Black Hole, and 7 is
the proper time.
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(7)
where 7 is the radial distance towards the Black Hole, and 7 is
the proper time. A, B and C' are defined by:

A(r,r) = Z TRA (I 3), Ag=1-— (r‘rl/3)4
B(r,r) = Z T3 By (r 1 1/3), By =0
C(r,r) = Z T30 (r 3, Co = 0.

=0

(Kinoshita, Mukohyama & Nakamura [arXiv:0807.3797v2])



The Fluid-Gravity Correspondence

The geometry that is dual to Bjorken Flow Hydrodynamics in

N = 4 SYM at infinite coupling is given by

ds? = —r2A(r, 7)dr2+2drdr+(rm+1)2eP0D dy2 42 dg?
(8)

where 7 is the radial distance towards the Black Hole, and 7 is

the proper time. This looks a little like a space with a

blackhole a horizon sinking into the radial direction.
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Figure: Schematic cartoon of the Geometry.
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Resurgence

We can calculate ¢; to large orders from this solution.

e(r) = 7743 (eo + 178 +er Y3 4 ) (9)

But after some finite order, the co-efficients start to contribute
more and more!
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Figure: Energy density co-efficients 6,11 " as a function of order n.
Note that (n!)!/" ~ n for large n. [arXiv:1302.0697v2]
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we can write our diverging series

e(r) =7 3o + €175 + eqr4/3
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Resurgence

Using the identity:

/du (/) n (10

we can write our diverging series

e(t) = 7743 (eo + €T3 + e V3 4 o) (11)
as an integral of a converging series

T e—ur?/? € € €
— 0,2, f 3, 2 4
e(7) —/du ( 7 ) (2' gt +) (12)

0
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Resurgence

This convergent series is called the Borel Sum

€0 €1 €9

(13)
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Resurgence

This convergent series is called the Borel Sum

_ € 2 €@ 3 € 4
C(u) = o +3!u + gyt (13)
If we plot ((u) in the complex plane we can examine the pole
structure.
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Figure: Poles of the ((u) series containing non-perturbative
information. [arXiv:1302.0697v2]
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Resurgence
To evaluate
7 o—ur?/3
= [du | —r
«r) = | u( — ><<u>
0
we take the leading pole contribution.

(14)
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Resurgence

To evaluate
7 o—ur?/3
e(r) = /du 273 ¢(w)
0
we take the leading pole contribution.
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Figure: Pole structure of the ((u).
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Resurgence

To evaluate

7 —ur?/3
(r)= [ du (B> ) (15)

0
we take the leading pole contribution.
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Resurgence

To evaluate

7 —ur?/3
e(7) :/du <€7_2/3> ¢(w)
0

we take the leading pole contribution.

Im &o

20)

-20

Figure: Pole structure of the ((u).
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Resurgence

Using the residue theorem one can find the leading
non-perturbative mode

—ur2/3
/ du <e7_2/3) C(u) ~ T%xp <—i2w72/3> (17)

C

with o = —1.5426 + 0.5192; and w = 3.11 — 2.7471i. (Heller,
Janik and Witaszczyk [arXiv:1302.0697v2])
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Using the residue theorem one can find the leading
non-perturbative mode

—ur2/3
/ du (e /3 ) C(u) ~ 7%xp <—i2w72/3> (17)

C

with o = —1.5426 + 0.5192; and w = 3.11 — 2.7471i. (Heller,
Janik and Witaszczyk [arXiv:1302.0697v2])

The take home message is that non-perturbative behaviour is
contained in the pole structure of our Borel Sum ¢ (u)
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Sz/d%\/fg(RHz)

(18)
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Strong (but finite) Coupling

The transport co-efficients have been found for infinitely
coupled N = 4 SYM wth classical gravity:

S = /df’ac\/—T;(RJr 12) (18)

We want to find them for finitely coupled N =4 SYM with
higher derivative (Gauss-Bonnet) gravity:

S = / &z /—g (R +124+ % (Ruvpo RM?” — AR, R™ + R2)>

(19)
We've managed this analytically for the first two terms in the
energy density expansion

e(r) = eor—3(1 + 2(1 —ayr i) (20)

This corresponds to the well-known result of Z = %

non-trivial consistency check!

, d
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Conclusion

» The hydrodynamic expansion for infinitely coupled
Bjorken Flow behaves diverges but can be used to gain
non-perturbative information.

» We have suceeded in finding the first two co-efficients for
strong (but finitely) coupled Bjorken Flow.
» Moving forward, we will attempt a high order

computation to determine the singularity structure of the
Borel plane, and extract non-perturbative information.
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