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Hydrodynamics in 3+1 Dimensions

The equation of motion for Hydrodynamics is the conservation
equation

∇µT
µν = 0 (1)

where T µν = T µν(ε, P, uµ) with ε the energy density, P the
Pressure, and uµ the fluid velocity.

For a perfect fluid

T µνideal = (ε+ P )uµuν − Pηµν . (2)

For a non-ideal fluid, we include every possible tensor
combination of ∂µ, uµ and ηµν with co-efficients ci.

T µν = T µνideal+ c1∂
µuν+c2∂

νuµ+ c3η
µν∂αu

α+ c4u
µuν∂αu

α+ ...
(3)

Generally symmetries of the theory can be used to constrain
these co-efficients ci.
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Hydrodynamics in 3+1 Dimensions

For example, in a conformal theory all these co-efficients (at
order ∂µuν) are contrained to η the shear viscousity

T µν = T µνideal − ησ
µν + ... (4)

where σµν = (∂µu
ν + ∂νuµ − 2

3
(uµuν + ηµν)∂αu

α).

In general we can include all derivatives of uµ

T µν = T µνideal +O(∼ ∂µuν) +O(∼ (∂µuν)2) + ... (5)

I This series is known as the Gradient Expansion and orders
itself in ∂µuν << 1 when uµ is slowly varying.

I The co-efficients ci are known as transport co-efficients
and uniquely specify our theory.
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Bjorken Flow

There is a phenomologically relevant model for Heavy Ion
collisions known as Bjorken Flow.

y

zLongitudinal Plane

y

x
Transverse Plane

Figure: Head-on and Side profiles for a Lead-Lead collision. The
overlapping region results in an energy density that evolves
longitudinally according to hydrodynamics.
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Bjorken Flow
I This energy density T00 = ε is a function of only the

proper time, and the form is known to all orders:

ε(τ) = τ−4/3(ε0 + ε1τ
−2/3 + ε2τ

−4/3 + ...) (6)

I Each new factor of τ−2/3 comes from exactly each new
order of ∂µuν in the gradient expansion, and the
transport co-efficients are related to each εi.

I To gain some understanding of this evolving system
analytically, we need a way to calculate the energy
co-efficients for a QCD-like theory at Strong Coupling.

I N = 4 SYM (a QCD-like theory) can be re-written at
infinite coupling as a gravitational theory.
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The Fluid-Gravity correspondence

We can perform classical gravity calculations to find strongly
coupled QFT results.

Black Hole Geometry

Hydrodynamical QFT

Figure: Some Gauge theories and Gravity theories are conjectured
to be the same theory under a field redefinition.
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The Fluid-Gravity Correspondence

The geometry that is dual to Bjorken Flow Hydrodynamics in
N = 4 SYM at infinite coupling is given by

ds2 = −r2A(r, τ)dτ 2+2dτdr+(rτ+1)2eB(r,τ)dy2+r2eC(r,τ)dx2⊥
(7)

where r is the radial distance towards the Black Hole, and τ is
the proper time.

A, B and C are defined by:

A(τ, r) =
∑
i=0

τ−
2
3
iAi(r

−1τ−1/3), A0 = 1−
(

1
rτ1/3

)4
B(τ, r) =

∑
i=0

τ−
2
3
iBi(r

−1τ−1/3), B0 = 0

C(τ, r) =
∑
i=0

τ−
2
3
iCi(r

−1τ−1/3), C0 = 0.

(Kinoshita, Mukohyama & Nakamura [arXiv:0807.3797v2])
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where r is the radial distance towards the Black Hole, and τ is
the proper time. This looks a little like a space with a
blackhole a horizon sinking into the radial direction.
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r =∞

r = τ−
1
3

Figure: Schematic cartoon of the Geometry.
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Resurgence

We can calculate εi to large orders from this solution.

ε(τ) = τ−4/3(ε0 + ε1τ
− 2

3 + ε2τ
−4/3 + ...) (9)

But after some finite order, the co-efficients start to contribute
more and more!

Figure: Energy density co-efficients ε
1/n
n as a function of order n.

Note that (n!)1/n ∼ n for large n. [arXiv:1302.0697v2]
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Resurgence

Using the identity:

n!
(
τ−

2
3

)n
=

∞∫
0

du

(
e−uτ

2/3

τ2/3

)
un (10)

we can write our diverging series

ε(τ) = τ−4/3(ε0 + ε1τ
− 2

3 + ε2τ
−4/3 + ...) (11)

as an integral of a converging series

ε(τ) =

∞∫
0

du

(
e−uτ

2/3

τ2/3

)(ε0
2!
u2 +

ε1
3!
u3 +

ε2
4!
u4 + ...

)
(12)
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Resurgence

This convergent series is called the Borel Sum

ζ(u) =
ε0
2!
u2 +

ε1
3!
u3 +

ε2
4!
u4 + ... (13)

If we plot ζ(u) in the complex plane we can examine the pole
structure.

Figure: Poles of the ζ(u) series containing non-perturbative
information. [arXiv:1302.0697v2]
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Resurgence

To evaluate
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Resurgence
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Resurgence

Using the residue theorem one can find the leading
non-perturbative mode∫

C

du

(
e−uτ

2/3

τ2/3

)
ζ(u) ∼ ταexp

(
−i3

2
ωτ2/3

)
(17)

with α = −1.5426 + 0.5192i and ω = 3.11− 2.7471i. (Heller,
Janik and Witaszczyk [arXiv:1302.0697v2])

The take home message is that non-perturbative behaviour is
contained in the pole structure of our Borel Sum ζ(u)
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Strong (but finite) Coupling

The transport co-efficients have been found for infinitely
coupled N = 4 SYM wth classical gravity:

S =

∫
d5x
√
−g (R+ 12) (18)

We want to find them for finitely coupled N = 4 SYM with
higher derivative (Gauss-Bonnet) gravity:

S =

∫
d5x
√
−g
(
R+ 12 +

λ

2

(
RµνρσR

µνρσ − 4RµνR
µν +R2

))
(19)

We’ve managed this analytically for the first two terms in the
energy density expansion

ε(τ) = ε0τ
−4/3(1 +

2

3
(1− 4λ)τ−

2
3 + ...) (20)

This corresponds to the well-known result of η
s
= 1−4λ

4π
, a

non-trivial consistency check!
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Conclusion

I The hydrodynamic expansion for infinitely coupled
Bjorken Flow behaves diverges but can be used to gain
non-perturbative information.

I We have suceeded in finding the first two co-efficients for
strong (but finitely) coupled Bjorken Flow.

I Moving forward, we will attempt a high order
computation to determine the singularity structure of the
Borel plane, and extract non-perturbative information.
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