Recursion for Integral Coefficients

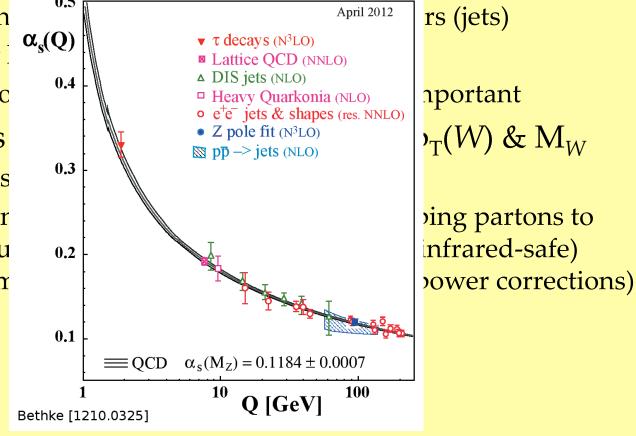
David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Adriano Lo Presti IPPP, Durham Univ. Decemnber 1, 2016 work also supported by the Ambrose Monell Foundation at the IAS

Precision Calculations for the LHC

- Test our understanding of the Standard Model in detail
 - ensure that experimenters understand their detectors
 - and that theorists understand the theory
- Uncertainties in Standard Model measurements
 - precision measurements of $M \downarrow W$
- Backgrounds to Frontier Physics
 - precision measurements of Higgs branchings and couplings
- Backgrounds to New Physics
 - cascade decays (e.g. SUSY searches)
 - candidate resonances

The Challenge

- Strong coupling is not small: α_s(M_Z) ≈ 0.12 and running is importent
 - ⇒ events h ⇒ each jet \exists ⇒ higher-c
- Processes ⇒need res
- Confinemer hadrons, bu avoiding sn

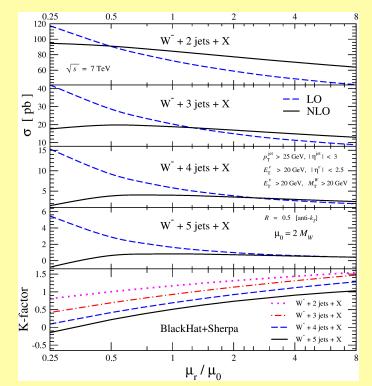


What's the Right Scale?

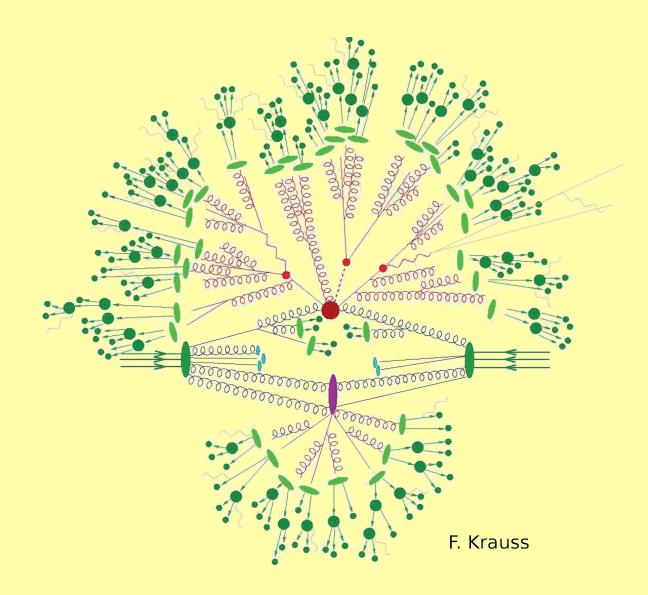
- Need to introduce renormalization scale to define αls , and a factorization scale to separate long-distance physics
- Physical observables should be independent of these unphysical scales
- But truncated perturbation theory isn't: the dependence is typically of **O**(first omitted order)
- Leading Order (LO "tree level") will have unacceptably large dependence
- Next-to-Leading Order (NLO) reduces this dependence

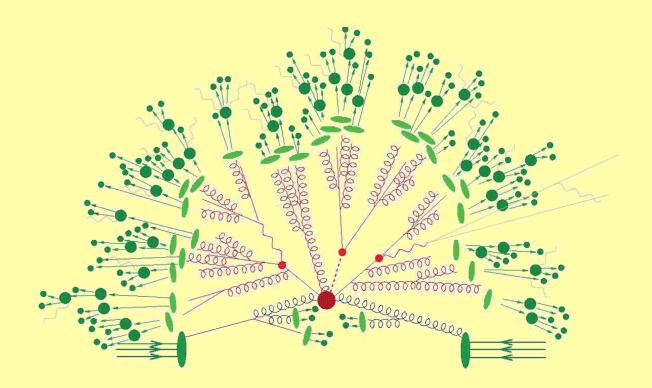
NLO Calculations in QCD

- Dramatic advances in NLO calculations over the last decade
- A standard tool
- Software libraries for one-loop amplitudes for a large classes of processes, also with many jets

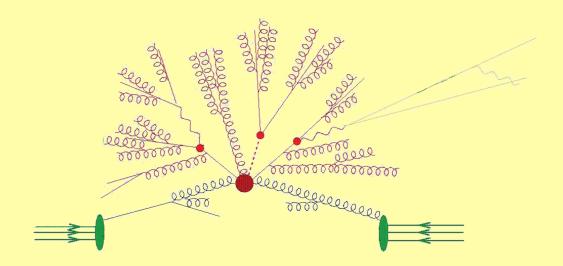


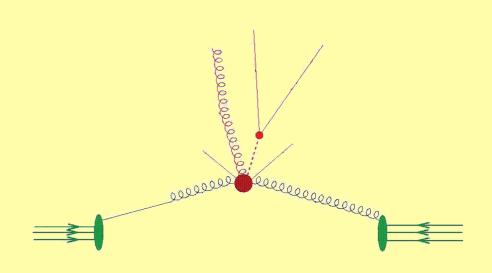
- NNLO will place even heavier demands on one-loop amplitudes
- Is there still room for improvement in methods?

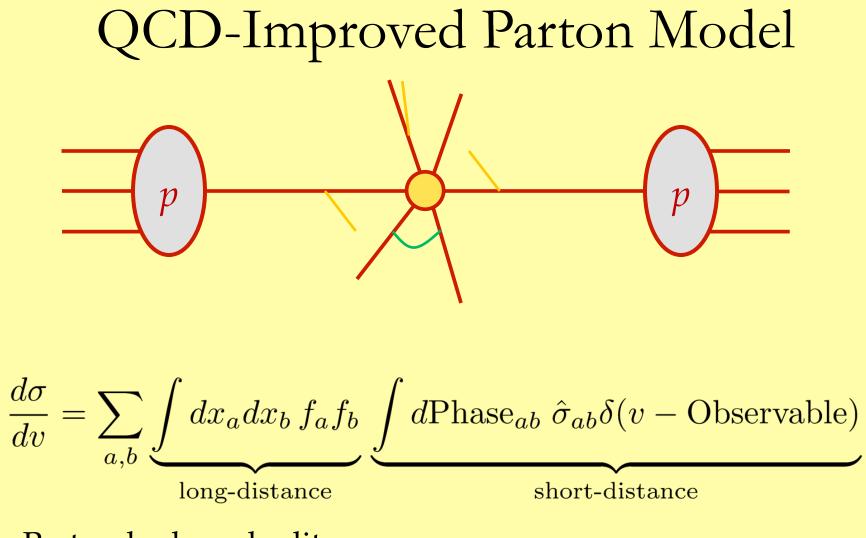




F. Krauss







Parton-hadron duality

Computing Amplitudes

Process-dependent Rational function of spinors

• Master formula (all loops)

Process-independent

• Master integrals determined for all *L*-loop processes, or restricted to set for given process, using IBP

 $Ampl = \sum c_j(\epsilon) \operatorname{Int}_j$

 $i \in \text{Basis}$

• Coefficients to be computed using generalized unitarity

Implementation

- Each amplitude will be evaluated 10⁵–10⁷ times
- Want a numerically efficient & stable implementation
- Analytics are nice for low-point amplitudes
- Not necessarily feasible for higher-point amplitudes
 And may not even be fastest
- Hybrid: analytics for Int_j, purely numerical evaluation for *c*↓*j*(*ε*)

Generalized Unitarity: Contour Integration

- Cut all propagators in the target integral topology
- Reduces corresponding amplitude to product of trees
- Cut is implemented by contour integration
- Real Integration → Complex Integration → Contour Integration
- Feynman Integrals → Their Coefficients
- Contours: Multidimensional tori that encircle *global poles*: common singularities of all cut propagators

• In one dimension, contour integration corresponds to performing a Laurent expansion, and taking the coefficient of the simple pole,

$$\dots + \frac{c_2}{z^2} + \frac{c_1}{z} + c_0 + c_{-1}z + \dots$$

• The analogous statement holds in higher complex dimensions when the integrand factorizes

Generalized Unitarity

Coefficients

$$c_j = \sum_{\text{contours } \Gamma} a_{\Gamma} \oint_{\Gamma} \prod_t A_t^{(0)}$$

- Coefficients *a*↓Γ determined by requirement that total derivatives give no contribution
- Many examples known, no general formula yet
 - limited to D=4 cuts
 - integrals with leading singularities only

Fun with Multivariate Contour Integration

One-dimensional contour integrals are independent of the contour's shape
 Image: Contour's shape
 Ima

• Unique contour (yielding non-vanishing residue) for each pole

Fun with Multivariate Contour Integration

• Not true in higher dimensions!

• Consider
$$\frac{z_1 dz_1 \wedge dz_2}{z_2 (a_1 z_1 + a_2 z_2)(b_1 z_1 + b_2 z_2)}$$

- Requiring any two denominators to vanish forces z\$\$\$\overline{2}1 = z\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$=0
- "Degenerate" residue: denominator can vanish on some contours encircling the global pole
- Nonhomologous contours: more than one for each global pole
- Corresponds to different groupings of denominators in algebraic approach (Griffiths & Harris; Cattani & Dickenstein)

Nonhomologous Contours

- Arise for double boxes
- Performing integrations non-democratically (heptacut + *z* contour) isolates one of the two topologies:
 - Horizontal double box
 - Vertical double box
- "Bad" sharing vanquished
- Within each topology, different masters (different numerators) isolated by different linear combinations of heptacut solutions + *z* contour: these share some contours

A Generic Coefficient

• Perform maximal cut, then a multivariate contour integral over remaining degrees of freedom

$$c_j = \sum_{\Gamma} a_{\Gamma} \oint_{\Gamma} \prod_i dz_i \text{ Jacobian}^{-1} \prod_d A_d^{\text{tree}}(z_i)$$

- Restrict attention to coefficients for which we can isolate contours cleanly
- Change variables to factorize poles

$$\frac{1}{(z_1 - z_1^0)(z_2 - z_2^0)\cdots}$$

• Assume that all factors have only "simple" poles

Laurent
$$F = \sum_{j=-1}^{\infty} F^{[-j]} z^j$$
 or appropriate multivariate
generalization
Laurent $F = \sum_{j_i=-1}^{\infty} F^{[-j]} \prod_i z_i^j$

 Peer into the Laurent expansions to get a more explicit formula for the global residue Global Residue $\prod_{\{z\}=\{z^0\}} F_d(z) =$ $\sum F_d^{[1]} \prod F_d^{[0]}$ $r \neq d$ $+ \sum F_{d_1}^{[1]} F_{d_2}^{[1]} F_{d_3}^{[-1]} \prod F_d^{[0]}$ $r
eq d_i$ d_1, d_2, d_3 $+\sum F_{d_1}^{[1]}F_{d_2}^{[1]}F_{d_3}^{[1]}F_{d_4}^{[-1]}F_{d_5}^{[-1]}\prod F_d^{[0]}$ $r \neq d_i$ d_{i} $+\sum F_{d_1}^{[1]}F_{d_2}^{[1]}F_{d_3}^{[1]}F_{d_4}^{[-2]} \prod F_d^{[0]} + \cdots$ $r \neq d_i$

Calculating Laurent[Amplitude]

- How can we calculate *A*^[*j*]?
- a) Calculate the *A* analytically, then extract the Laurent expansion analytically
 - suitable for small number of legs
 - But:
 - not efficient at larger *n* (exponential vs polynomial complexity)
 - not amenable to direct numerical calculation
 - doesn't allow combining subexpressions across coefficients
- b) Seek recursive approach

$$A_n = f(A_i, A_j, \ldots) \qquad i, j, \ldots \le n$$

Laurent $A_n = f(\text{Laurent } A_i, \text{Laurent } A_j, \ldots) \quad i, j, \ldots \leq n$

- Apply this to recursion relation
 - BCFW not so suitable
 - Use Berends–Giele instead
- Recursion for off-shell current $J\downarrow\mu$
- Schematically (in amputated form)

$$J^{\mu}(1,...,n) = -\sum_{j=1}^{n-1} V_{3}^{\mu\nu'\rho'} \frac{d_{\nu'\nu}}{K_{1,j}^{2}} \frac{d_{\rho'\rho}}{K_{j+1,n}^{2}} J^{\nu}(1,...,j) J^{\rho}(j+1,...,n) -\sum_{j_{1}=1}^{n-2} \sum_{j_{2}=j_{1}+1}^{n-1} V_{4}^{\mu\nu'\tau'\rho'} \frac{d_{\nu'\nu}}{K_{1,j_{1}}^{2}} \frac{d_{\tau'\tau}}{K_{j_{1}+1,j_{2}}^{2}} \frac{d_{\rho'\rho}}{K_{j_{2}+1,n}^{2}} \times J^{\nu}(1,...,j_{1}) J^{\tau}(j_{1}+1,...,j_{2}) J^{\rho}(j_{2}+1,...,n)$$

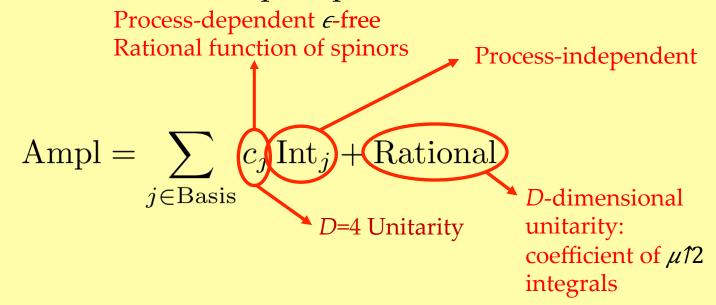
Continuing schematically

Laurent $J^{\mu}(1, ..., n) =$ $-\sum_{j=1}^{n-1}'$ Laurent $V_{3}^{\mu\nu'\rho'}$ Laurent $\frac{d_{\nu'\nu}}{K_{1,j}^{2}}$ Laurent $\frac{d_{\rho'\rho}}{K_{j+1,n}^{2}}$ \times Laurent $J^{\nu}(1, ..., j)$ Laurent $J^{\rho}(j+1, ..., n)$

We obtain a system of recursions for the expansion coefficients $J^{[r]\mu}(1,...,n) = -\sum_{j=1}^{n-1} \sum_{r_i=r_{\min}(r)<0}^{1} \delta_{r_1+r_2+r_3+r_4+r_5} V_3^{[r+r_1]\mu\nu'\rho'} \left(\frac{d_{\nu'\nu}}{K_{1,j}^2}\right)^{[r_2]} \left(\frac{d_{\rho'\rho}}{K_{j+1,n}^2}\right)^{[r_3]} \times J^{[r_4]\nu}(1,...,j) J^{[r_5]\rho}(j+1,...,n)$

Example: One-Loop Triangle

• Master formula for one-loop amplitudes



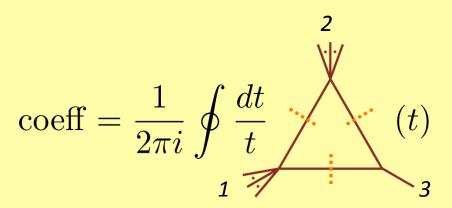
• Basis consists of boxes, triangles, and bubbles

Example: Triangle Coefficients

Four-fold contour integral translates into maximal cuts, plus one additional degree of freedom for triangles.

Coefficients given by residues at ∞

Forde (2007)



Can also write this as $-Inf \downarrow t (A \downarrow 1 (t) A \downarrow 2 (t) A \downarrow 3 (t)) / \downarrow t = 0$ where Inf is the expansion as $t \rightarrow \infty$

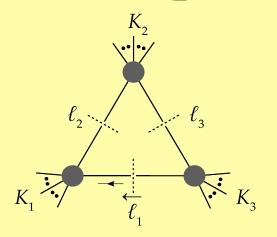
Example: Triangle Coefficients

In BLACKHAT, contour integral is evaluated numerically using a discrete Fourier projection (exact!)

Known box integrand first subtracted for numerical stability as in the OPP procedure Ossola–Papadopoulos–Pittau

$$A_1(t)A_2(t)A_3(t) - \sum_j \frac{\operatorname{Res}_{t=t_j} A_1 A_2 A_3}{t-t_j}$$

Example: Triangle Coefficient



Build massless momenta

$$\begin{aligned} K_1^{\flat,\mu} &= K_1^{\mu} - \frac{K_1^2}{2K_1 \cdot K_2^{\flat}} K_2^{\flat,\mu} \\ K_2^{\flat,\mu} &= K_2^{\mu} - \frac{K_2^2}{2K_2 \cdot K_1^{\flat}} K_1^{\flat,\mu} \end{aligned}$$

Parametrization

$$\begin{split} |\ell_i\rangle &= t|K_2^{\flat}\rangle + a_{i1}|K_1^{\flat}\rangle \\ |\ell_i] &= |K_2^{\flat}] + \frac{a_{i2}}{t}|K_1^{\flat}] \end{split}$$

• *t* is the remaining degree of freedom; Jacobian is *t*

Large-t Behavior

Behavior depends only on helicities of cut legs

 $\begin{aligned} A = A \uparrow [1] t + A \uparrow [0] + A \uparrow [-1] t \uparrow -1 + A \uparrow [-2] t \uparrow -2 + \cdots \\ (\text{except for } (+,+) \text{ helicities, where } A \sim t \uparrow -3) \end{aligned}$

- Side remark about gravity
 - Naively ~ t n-1
 - Because of KLT, ~ t12

Global Residue

- Want global residue at $t=\infty$
- Extract coefficient of t¹0 in A¹1 A¹2 A¹3
- Formula for triangle coefficient

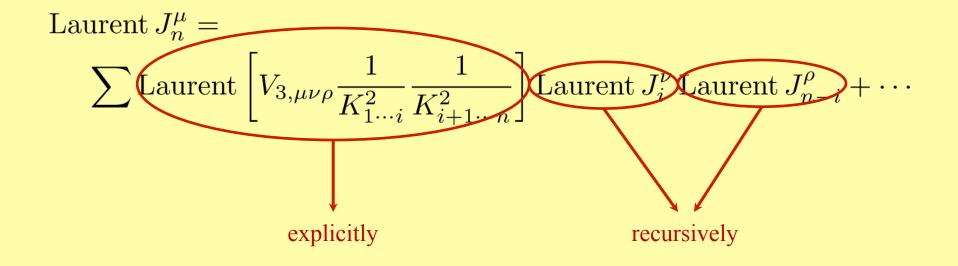
$$\begin{split} - \begin{bmatrix} A_1^{[1]} A_2^{[1]} A_3^{[-2]} + A_1^{[-2]} A_2^{[1]} A_3^{[1]} + A_1^{[1]} A_2^{[-2]} A_3^{[1]} \\ + A_1^{[1]} A_2^{[0]} A_3^{[-1]} + A_1^{[-1]} A_2^{[1]} A_3^{[0]} + A_1^{[0]} A_2^{[-1]} A_3^{[1]} \\ + A_1^{[0]} A_2^{[1]} A_3^{[-1]} + A_1^{[-1]} A_2^{[0]} A_3^{[1]} + A_1^{[1]} A_2^{[-1]} A_3^{[0]} \\ + A_1^{[0]} A_2^{[0]} A_3^{[0]} \end{bmatrix} \end{split}$$

• Want direct recursive equations for the *Aiî*[*j*]

- BCFW is awkward:
 - If shift legs aren't $\ell \downarrow 1$, $\ell \downarrow 2$, \Rightarrow in general some contributions have a *t*-dependent internal line
 - the shift induces *t* dependence on other lines in the lower-point amplitudes
 - We then have to track new kinds of amplitudes, with *t* expansions on many legs
 - Shift legs *l l*1 ,*l l*2 require additional factors to adjust the *t* power-counting, and the rules for assigning them are cumbersome
- Instead, use Berends–Giele recursion
 - Also has better large-*n* scaling

Interchange with Recursion

$$J_{n}^{\mu} = \sum V_{3,\mu\nu\rho} \frac{1}{K_{1\cdots i}^{2}} J_{i}^{\nu} \frac{1}{K_{i+1\cdots n}^{2}} J_{n-i}^{\rho} + V_{4,\dots} \cdots \text{Berends-Giele (1988)}$$



• First, rewrite it to make it purely cubic (still amputating the propagator)

$$\begin{aligned} J^{\mu}(1,\ldots,n) &= \\ \sum_{j=1}^{n-1} \left\{ -V_{3}^{\mu\nu'\rho'} \frac{d_{\nu'\nu}(K_{1,j})}{K_{1,j}^{2}} \frac{d_{\rho'\rho}(K_{j+1,n})}{K_{j+1,n}^{2}} J^{\nu}(1,\ldots,j) J^{\rho}(j+1,\ldots,n) \\ &- V_{T}^{\mu\nu'\tau'\rho'} \frac{d_{\nu'\nu}(K_{1,j})}{K_{1,j}^{2}} d_{\rho'\tau'\rho\tau}(K_{j+1,n}) J^{\nu}(1,\ldots,j) J^{\rho\tau}(j+1,\ldots,n) \\ &- V_{T}^{\mu\nu'\rho'\tau'} d_{\rho'\tau'\rho\tau}(K_{1,j}) \frac{d_{\nu'\nu}(K_{j+1,n})}{K_{j+1,n}^{2}} J^{\rho\tau}(1,\ldots,j) J^{\nu}(j+1,\ldots,n) \right\} \\ \textit{/1}\mu \text{ is a fictitious-tensor current, which also has a cubic} \\ \substack{\text{recursion}\\ J^{\mu\nu}(1,\ldots,n) = V_{T}^{\mu\nu\rho'\tau'} \sum_{j=1}^{n-1} \frac{d_{\rho'\rho}(K_{1,j})}{K_{1,j}^{2}} \frac{d_{\tau'\tau}(K_{j+1})}{K_{j+1,n}^{2}} J^{\rho}(1,\ldots,j) J^{\tau}(j+1,\ldots,n) \end{aligned}$$

(more recent alternative by Mafra & Schlotterer)

- Next, switch to a helicity form
- Switch to light-cone gauge $d_{\mu\nu}^{\rm LC}(K) = -g_{\mu\nu} + \frac{q^{\mu}K^{\nu} + K^{\mu}q^{\nu}}{q \cdot K}$,
- Using massless momentum $K^{\flat} = K \frac{K^2}{2q \cdot K}q$
- Rewrite

$$d_{\mu\nu}^{\rm LC}(K) = \sum_{\sigma=\pm} \varepsilon_{\mu}^{(\sigma)}(K^{\flat}, q) \varepsilon_{\nu}^{(\sigma)*}(K^{\flat}, q) + \frac{K^2 q^{\mu} q^{\nu}}{(q \cdot K^{\flat})^2}$$

- This gives us three terms in a sum (±,0) instead of summing over four momentum components, and definite-helicity currents
 - many terms in sum drop out
 - adjust phases to make *t* power-counting cleaner
 - non-zero vertices are V↓3 (--+), V↓3 (++-),V↓3 (0-+) & cyclic, V↓T (-+[-+]), V↓T (+-[-+])
 - absorb additional factors into $V \downarrow 3$ (0– +) vertex

• With $\rho l \pm = 1/K h 2$, $\rho l = 1/q \cdot K$, the recursion is

$$J^{(\lambda)}(1,...,n) = \sum_{j=1}^{n-1} \left\{ -\sum_{\lambda_{1,2}=\pm,0} V_3(\lambda, -\lambda_1, -\lambda_2) \rho_{\lambda_1} \rho_{\lambda_2} J^{(\lambda_1)}(1,...,j) J^{(\lambda_2)}(j+1,...,n) - \sum_{\lambda_{1,2}=\pm} V_T(\lambda, -\lambda_1, (-\lambda_2)(\lambda_2)) \rho_{\lambda_1} J^{(\lambda_1)}(1,...,j) J^{(\lambda_2, -\lambda_2)})(j+1,...,n) + \sum_{\lambda_{1,2}=\pm} V_T(\lambda, -\lambda_2, (-\lambda_1)(\lambda_1)) \rho_{\lambda_2} J^{(\lambda_1, -\lambda_1)}(1,...,j) J^{(\lambda_2)}(j+1,...,n) \right\}$$

Example: Simple forms

• Shorthand $((1 \cdots n)) \equiv (12)(23) \cdots ((n-1)n)$

$$J^{(+)}(1^+, \dots, n^+) = 0$$

$$J^{(-)}(1^+, \dots, n^+) = 2i \frac{q \cdot K_{1,n} K_{1,n}^2}{\langle q \, 1 \rangle \langle q \, n \rangle \langle \langle 1 \cdots n \rangle \rangle}$$

$$I^{(+)}(1^+, \dots, j^-, (j+1)^+, \dots, n^+) = i \frac{K_{1,n}^2}{2q \cdot K_{1,n} \langle q \, 1 \rangle \langle q \, n \rangle \langle \langle 1 \cdots n \rangle \rangle}$$

$$J^{(+-)}(1^-, 2^+, \dots, n^+) = -i \frac{\langle q \, 1 \rangle^2 \langle 1 \, n \rangle}{2 \langle \langle 1 \cdots n \rangle \rangle \langle q \, n \rangle^2}$$

$$- i \frac{\langle q \, 1 \rangle^3 q \cdot K_{1,n}}{2 \langle \langle 1 \cdots n \rangle \rangle \langle q \, n \rangle} \sum_{j=1}^{n-1} \frac{\langle j \, j+1 \rangle}{q \cdot K_{1,j} \langle q \, j \rangle \langle q \, j+1 \rangle}$$

Recursions

- Take off-shell to be $-\ell \downarrow 1$, on-shell legs to be $\ell \downarrow 2$, 1, 2, ...
- Only first current (*l* ↓ 2 1…*j*) is *t*-dependent; second (*j*+1…
 n) is just the usual tree current
- $V \downarrow 3 \sim O(t), 1/(\ell \downarrow 2 + K \downarrow 1 \cdots j) \uparrow 2 \sim O(t \uparrow -1)$
- Schematically

$$J^{[1]} = \sum_{j} \left(V_3 \frac{1}{(\ell_2 + K_{1\cdots j})^2} \right)^{[0]} J^{[1]}(\ell_2, 1, \dots, j) J^{\text{tree}}(j+1, \dots, n) + \cdots$$
$$J^{[0]} = \sum_{j} \sum_{r=-1}^{0} \left(V_3 \frac{1}{(\ell_2 + K_{1\cdots j})^2} \right)^{[r]} J^{[-r]}(\ell_2, 1, \dots, j) J^{\text{tree}}(j+1, \dots, n) + \cdots$$
$$J^{[-1]} = \sum_{j} \sum_{r=-2}^{0} \left(V_3 \frac{1}{(\ell_2 + K_{1\cdots j})^2} \right)^{[r]} J^{[-1-r]}(\ell_2, 1, \dots, j) J^{\text{tree}}(j+1, \dots, n) + \cdots$$

Tower of Recursions

- *J1*[1] is a function of lower-point *J1*[1] and *J1*tree
- *J1*[0] is a function of lower-point *J1*[1], *J1*[0], and *J1*tree
- *J1*[-1] is a function of lower-point *J1*[1], *J1*[0], *J1*[-1], and *J1*tree

Example

• Simplest configuration

$$J^{[1](-)}(\ell_{2}^{+}, 1^{+}, \dots, n^{+}) = 0$$

$$J^{[0](-)}(\ell_{2}^{+}, 1^{+}, \dots, n^{+}) = -i \frac{\langle K_{1}^{\flat} | K_{1} \dots n | K_{2}^{\flat}] \langle q K_{2}^{\flat} \rangle}{\langle 1 K_{1}^{\flat} \rangle \langle q n \rangle \langle \langle 1 \dots n \rangle \rangle}$$

•

Next: Purely Rational Terms

 Can be recast as contour integrals for *I*/4 [μî4], *I*/3 [μî2], *I*/2 [μî2] where μî2 are (-2ε)-dimensional components

Badger

- Single-variable expansion in $\mu 1^2$ for the box
- Two-variable expansion in $\mu 1^2$ and *t* for the triangle
- Bubbles will need some additional tricks

Summary

- Recursive approach to integral coefficients
- Exploit general structure of integral coefficients as global residues, and interchange Laurent expansion and recursion
- Compatible with purely numerical evaluation
- Opens possibilities for more common sub-expression evaluation