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Precision Calculations for the LHC	

•  Test our understanding of the Standard Model in detail	
–  ensure that experimenters understand their detectors	
–  and that theorists understand the theory	

•  Uncertainties in Standard Model measurements	
–  precision measurements of ​𝑀↓𝑊 	

•  Backgrounds to Frontier Physics	
–  precision measurements of Higgs branchings and couplings	

•  Backgrounds to New Physics	
–  cascade decays (e.g. SUSY searches)	
–  candidate resonances	



The Challenge 
•  Strong coupling is not small: αs(MZ) ≈ 0.12 and running 

is important	
⇒ events have high multiplicity of hard clusters (jets)	
⇒ each jet has a high multiplicity of hadrons	
⇒ higher-order perturbative corrections are important	

•  Processes can involve multiple scales: pT(W) & MW	
⇒ need resummation of logarithms	

•  Confinement introduces further issues of mapping partons to 
hadrons, but for suitably-averaged quantities (infrared-safe) 
avoiding small E scales, this is not a problem (power corrections)	



What’s the Right Scale? 

•  Need to introduce renormalization scale to define ​𝛼↓𝑠 , 
and a factorization scale to separate long-distance physics	

•  Physical observables should be independent of these 
unphysical scales	

•  But truncated perturbation theory isn’t: the dependence is 
typically of O(first omi]ed order)	

•  Leading Order (LO —“tree level”) will have unacceptably 
large dependence	

•  Next-to-Leading Order (NLO) reduces this dependence	



NLO Calculations in QCD 
•  Dramatic advances in NLO  

calculations over the last decade	

•  A standard tool	

•  Software libraries for one-loop  
amplitudes for a large classes of  
processes, also with many jets	

•  NNLO will place even heavier demands on one-loop 
amplitudes	

•  Is there still room for improvement in methods?	











QCD-Improved Parton Model 

	
           	
Parton-hadron duality	
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Computing Amplitudes 

•  Master formula (all loops)	

•  Master integrals determined for all L-loop processes, or 
restricted to set for given process, using IBP	

•  Coefficients to be computed using generalized unitarity	

Process-independent	

Process-dependent  
Rational function of spinors	



Implementation 

•  Each amplitude will be evaluated 105–107 times	

•  Want a numerically efficient & stable implementation	

•  Analytics are nice for low-point amplitudes	

•  Not necessarily feasible for higher-point amplitudes	
–  And may not even be fastest	

•  Hybrid: analytics for Intj, purely numerical evaluation 
for ​𝑐↓𝑗 (𝜖)	



Generalized Unitarity: 
Contour Integration 

•  Cut all propagators in the target integral topology	

•  Reduces corresponding amplitude to product of trees	

•  Cut is implemented by contour integration	
•  Real Integration → Complex Integration  →  

Contour Integration	

•  Feynman Integrals → Their Coefficients	

•  Contours: Multidimensional tori that encircle  
global poles: common singularities of all cut propagators	



•  In one dimension, contour integration corresponds to 
performing a Laurent expansion, and taking the 
coefficient of the simple pole,	

•  The analogous statement holds in higher complex 
dimensions when the integrand factorizes	



Generalized Unitarity 

•  Coefficients	

•  Coefficients ​𝑎↓Γ  determined by requirement that total 
derivatives give no contribution	

•  Many examples known, no general formula yet	
–  limited to D=4 cuts	
–  integrals with leading singularities only	



Fun with Multivariate Contour Integration 

•  One-dimensional contour integrals are independent of the 
contour’s shape	

•  Unique contour (yielding non-vanishing residue) for each pole	



Fun with Multivariate Contour Integration 

•  Not true in higher dimensions!	

•  Consider	

•  Requiring any two denominators to vanish forces ​𝑧↓1 = ​𝑧↓2 
=0	

•  “Degenerate” residue: denominator can vanish on some 
contours encircling the global pole	

•  Nonhomologous contours: more than one for each global pole	
•  Corresponds to different groupings of denominators in 

algebraic approach (Griffiths & Harris; Ca]ani & Dickenstein)	



Nonhomologous Contours 
•  Arise for double boxes	

•  Performing integrations non-democratically (heptacut + z 
contour) isolates one of the two topologies:	
–  Horizontal double box	
–  Vertical double box	

•  “Bad” sharing vanquished	

•  Within each topology, different masters (different 
numerators) isolated by different linear combinations of 
heptacut solutions + z contour: these share some contours	



A Generic Coefficient 

•  Perform maximal cut, then a multivariate contour integral 
over remaining degrees of freedom	

•  Restrict a]ention to coefficients for which we can isolate 
contours cleanly	

•  Change variables to factorize poles	



•  Assume that all factors have only “simple” poles	

•  Peer into the Laurent expansions to get a more explicit 
formula for the global residue	

or appropriate multivariate 
generalization  



Calculating Laurent[Amplitude] 

•  How can we calculate A[j]?	
a)  Calculate the A analytically, then extract the Laurent 

expansion analytically	
–  suitable for small number of legs	

   But:	
–  not efficient at larger n (exponential vs polynomial complexity)	
–  not amenable to direct numerical calculation	
–  doesn’t allow combining subexpressions across coefficients	

b)  Seek recursive approach	



•  Apply this to recursion relation	
–  BCFW not so suitable	
–  Use Berends–Giele instead	

•  Recursion for off-shell current ​𝐽↓𝜇 	

•  Schematically (in amputated form)	



Continuing schematically	
	
	
	
	
	
We obtain a system of recursions for the expansion coefficients	



Example: One-Loop Triangle 

•  Master formula for one-loop amplitudes	

•  Basis consists of boxes, triangles, and bubbles	

Process-independent	

D=4 Unitarity		

Process-dependent 𝜖-free  -free  
Rational function of spinors	

D-dimensional  
unitarity: 
coefficient of ​𝜇↑2  
integrals	



Example: Triangle Coefficients 
	
Four-fold contour integral translates into maximal cuts, plus one 

additional degree of freedom for triangles.	
	

Coefficients given by residues at ∞ 	 	Forde (2007)	
	
	
	
	
	
	
	
	
Can also write this as ​−Inf↓𝑡 (​𝐴↓1 (𝑡)​𝐴↓2 (𝑡)​𝐴↓3 (𝑡))​​ ​|↓𝑡=0 	
where Inf is the expansion as 𝑡→∞	
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Example: Triangle Coefficients 
	

In BLACKHAT, contour integral is evaluated numerically 
using a discrete Fourier projection (exact!)	

	
	
	

Known box integrand first subtracted for numerical stability as 
in the OPP procedure             	Ossola–Papadopoulos–Pi]au	

	
	



Example: Triangle Coefficient 

	 	 	 	Build massless momenta	

•  Parametrization	

•  t is the remaining degree of freedom; Jacobian is t	



Large-t Behavior 

	
Behavior depends only on helicities of cut legs	


𝐴= ​𝐴↑[1] 𝑡+ ​𝐴↑[0] + ​𝐴↑[−1] ​𝑡↑−1 + ​𝐴↑[−2] ​𝑡↑−2 +⋯	

(except for (+,+) helicities, where 𝐴~ ​𝑡↑−3 ) 	 		

•  Side remark about gravity	
–  Naively ~ ​𝑡↑𝑛−1 	
–  Because of KLT, ~ ​𝑡↑2 	



Global Residue 

•  Want global residue at 𝑡=∞	
•  Extract coefficient of ​𝑡↑0  in ​𝐴↓1 ​𝐴↓2 ​𝐴↓3 	

•  Formula for triangle coefficient	

•  Want direct recursive equations for the ​𝐴↓𝑖↑[𝑗] 	



•  BCFW is awkward:	
–  If shift legs aren’t ​ℓ↓1 , ​ℓ↓2 , ⇒ in general some contributions 

have a 𝑡-dependent internal line	
–  the shift induces 𝑡 dependence on other lines in the lower-point 

amplitudes	
–  We then have to track new kinds of amplitudes, with 𝑡 

expansions on many legs	
–  Shift legs ​ℓ↓1 , ​ℓ↓2  require additional factors to adjust the 𝑡 

power-counting, and the rules for assigning them are 
cumbersome	

•  Instead, use Berends–Giele recursion 	
–  Also has be]er large-𝑛 scaling	



Interchange with Recursion 

Berends–Giele (1988)	

explicitly recursively 



•  First, rewrite it to make it purely cubic (still amputating the 
propagator) 	

Duhr, Höche, Maltoni; Gleisberg, Höche	

	
	
	
	
	
	
​𝐽↑𝜇  is a fictitious-tensor current, which also has a cubic 
recursion	
	
	
(more recent alternative by Mafra & Schlo]erer)	



•  Next, switch to a helicity form	
•  Switch to light-cone gauge	

•  Using massless momentum	
•  Rewrite	

•  This gives us three terms in a sum (±,0) instead of 
summing over four momentum components, and 
definite-helicity currents	
–  many terms in sum drop out	
–  adjust phases to make 𝑡 power-counting cleaner	
–  non-zero vertices are ​𝑉↓3 (−− +), ​𝑉↓3 (++−), ​𝑉↓3 (0− +)  & 

cyclic, ​𝑉↓T (−+[−+]), ​𝑉↓T (+−[−+])	
–  absorb additional factors into ​𝑉↓3 (0− +) vertex	



•  With ​𝜌↓± = ​1/​𝐾↑2  , ​𝜌↓0 = ​1/𝑞⋅𝐾 , the recursion is	



Example: Simple forms 

•  Shorthand 〈〈1⋯𝑛〉〉≡〈12〉〈23〉⋯〈(𝑛−1)𝑛〉	



Recursions 

•  Take off-shell to be − ​ℓ↓1 , on-shell legs to be ​ℓ↓2 , 1, 2, …	
•  Only first current ( ​ℓ↓2 1⋯𝑗) is 𝑡-dependent; second (𝑗+1⋯
𝑛) is just the usual tree current	

•  ​𝑉↓3  ~ 𝑂(𝑡), ​1/​(​ℓ↓2 + ​𝐾↓1⋯𝑗 )↑2   ~ 𝑂(​𝑡↑−1 )	
•  Schematically	



Tower of  Recursions 

•  ​𝐽↑[1]  is a function of lower-point ​𝐽↑[1]  and ​𝐽↑tree 	

•  ​𝐽↑[0]  is a function of lower-point ​𝐽↑[1] , ​𝐽↑[0] , and ​𝐽↑tree 	

•  ​𝐽↑[−1]  is a function of lower-point ​𝐽↑[1] , ​𝐽↑[0] , ​𝐽↑[−1] , 
and ​𝐽↑tree 	



Example 

•  Simplest configuration	



Next: Purely Rational Terms 

•  Can be recast as contour integrals for ​𝐼↓4 [ ​𝜇↑4 ], ​𝐼↓3 [ ​
𝜇↑2 ], ​𝐼↓2 [ ​𝜇↑2 ] where ​𝜇↑2  are (−2𝜖)-dimensional 
components	

Badger	
–  Single-variable expansion in ​𝜇↑2  for the box	
–  Two-variable expansion in ​𝜇↑2  and 𝑡 for the triangle	
–  Bubbles will need some additional tricks	



Summary 

•  Recursive approach to integral coefficients	

•  Exploit general structure of integral coefficients as global 
residues, and interchange Laurent expansion and recursion	

•  Compatible with purely numerical evaluation	

•  Opens possibilities for more common sub-expression 
evaluation	


