1/34

Five-point two-loop master integrals in QCD

Adriano Lo Presti

イロト イポト イヨト イヨト

Based on work with with Thomas Gehrmann and Johannes Henn

PRL 116, 062001 (2016) and work in preparation

Outline

2 The integrals

3 Boundary conditions & application

◆□ ▶ < 畳 ▶ < 星 ▶ < 星 ▶ 星 りへで 2/34

Introduction

1-loop NLO established in the last decade as the new standard for high-multiplicity processes. BlackHat, Gosam, OpenLoops, NJet ...

2-loop NNLO is the current frontier

- 2 → 2 processes calculated recently ($\gamma\gamma$, ZZ, Z γ , W γ , WW, $t\bar{t}$, Hj, Wj, jj) [Catani, Cieri, de Florian, Ferrera, Grazzini, Gehrmann, G.-De Ridder, Glover, Czakon, Fiedler, Mitov, Kallweit, Maierhöfer, Rathlev, Chen, Jaquier, Melnikov, Caola, Schulze, Tejeda-Yeomans, Huss, Morgan, Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello, Williams ...] Many recent results on $pp \rightarrow HH$ [Munich+OpenLoops (DeFlorian et al.); Mass effects (NLO): Gosam+SecDec (Borowka et al.), DeGrassi, Giardino, Gröber]
- 2 \rightarrow 3 computations are still an open field E.g.: $pp \rightarrow 3j$ is an important process for precise α_s determination.

Introduction

Among NNLO bottle-necks: two-loop scattering amplitudes \longrightarrow purely virtual contribution.

At one-loop Feynman diagrams can be decomposed into a small set of **master integrals** (MIs), all of which are known.

At two-loop much larger set of MIs \rightarrow extends to higher multiplicities.

2-loop five-point planar integrals

I present the computation of the full set of planar master integrals at 5-pt

$$G_{\{a_1,\dots,a_{11}\}} = \int \frac{d^D k_1 d^D k_2}{(i\pi^{D/2})^2} \frac{D_9^{-a_9} D_1^{-a_{10}} D_{11}^{-a_{11}}}{D_1^{a_1} D_2^{a_2} D_3^{a_3} D_4^{a_4} D_5^{a_5} D_6^{a_6} D_7^{a_7} D_8^{a_8}}$$

$$\begin{array}{rcl} D_1 &=& -k_1^2,\\ D_2 &=& -(k_1+p_1)^2,\\ D_3 &=& -(k_1+p_1+p_2)^2,\\ D_4 &=& -(k_1+p_1+p_2+p_3)^2,\\ D_5 &=& -k_2^2,\\ D_6 &=& -(k_2+p_1+p_2+p_3)^2,\\ D_7 &=& -(k_2+p_1+p_2+p_3+p_4)^2,\\ D_8 &=& -(k_1-k_2)^2,\\ D_9 &=& -(k_1+p_1+p_2+p_3+p_4)^2,\\ D_{10} &=& -(k_2+p_1)^2,\\ D_{11} &=& -(k_2+p_1+p_2)^2 \end{array}$$

Also calculated by [Papadopoulos, Tommasini, Wever]

Integration-by-part identities

and differential equations

Given a Feynman integral

$$G(a_1, a_2, \dots, a_n) = \int \prod_{j=1}^l \frac{d^D k_j}{i \pi^{D/2}} \frac{1}{D_1^{a_1} \dots D_n^{a_n}} , \text{ where } D_i = (k_j - p_i, - \dots)^2$$

Integration by part identities

$$\int \prod_{j=1}^l rac{d^D k_j}{i \pi^{D/2}} \left(rac{\partial}{\partial k_j^\mu} \, v^\mu \, rac{1}{D_1^{a_1} \dots D_n^{a_n}}
ight) \, = \, 0$$

(v^{μ} is appropriately chosen vector, e.g. $k^{\mu}_{j} - p^{\mu}_{1}$)

ightarrow terms with same denominators D_i , but different indices a_1, a_2, \dots

relate different integrals \implies we can reduce them to MIs.[Laporta alg.]

AIR[Anastasiou, Lazopoulos], Fire [Smirnov], Reduze [Studerus, Manteuffel], LiteRed [Lee]

Integration-by-part identities

and differential equations

Derivaties w.r.t external kinematic invariants, e.g. $s_{12} = (p_1 + p_2)^2$

$$\frac{\partial}{\partial s_{12}} \int \prod_{j=1}^{l} \frac{d^{D}k_{j}}{i\pi^{D/2}} \frac{1}{D_{1}^{a_{1}} \dots D_{n}^{a_{n}}} = \int \prod_{j=1}^{l} \frac{d^{D}k_{j}}{i\pi^{D/2}} \frac{1}{2s_{12}} \left((p_{1}+p_{2})^{\mu} \frac{\partial}{\partial (p_{1}+p_{2})^{\mu}} \right) \frac{1}{D_{1}^{a_{1}} \dots D_{n}^{a_{n}}}$$

$$\longrightarrow \qquad \sum c_{s_{12};b_{1}\dots,b_{n}} \int \prod_{j=1}^{l} \frac{d^{D}k_{j}}{i\pi^{D/2}} \frac{1}{D_{1}^{b_{1}} \dots D_{n}^{b_{n}}}$$

on the R.H.S.:

same $D_i s$, but different indices: same topology + its subtopologies appear reduced to master integrals using IBP relations

 \Rightarrow differential equations for MIs. [Gehrmann, Remiddi]

Codes used: Fire [Smirnov], Reduze [von Manteuffel]

2-loop five-point planar integrals

(28, G[1, (0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0)], 1]

(33, GIL, (1, 1

1.0.0.0.0.011.1

 $\{46, G[1, \{1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0\}], 3\}$

2-loop five-point planar integrals

61 MIs , 10 new

 $\{46, G[1, \{1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0\}], 3\}$

\leq 4 point MIs known [Gehrmann, Remiddi (2001)]

(28, G[1, (0, 1, 0, 1, 1, 1, 0, 1, 0, 0.011

133, GH

• • • • • • • • • • • • 9/34

Integration-by-part identities and differential equations

MIs basis is not unique. Suitable choice considerably simplifies diff. eqs.:

 $\partial_{x_i}\vec{f} = A_i(x,\varepsilon)\vec{f} \longrightarrow \partial_{x_i}\vec{f} = \varepsilon \tilde{A}_i(x)\vec{f}$ can be integrated order by order in ε .

$$\vec{f}(x,\varepsilon) = \vec{f}_0(x) + \varepsilon \vec{f}_1(x) + \varepsilon^2 \vec{f}_2(x) + \dots$$
 [J. Henn]

$$\begin{aligned} \partial_{x_i} \vec{f}_0(x) &= 0 & \vec{f}_0(x) = \vec{f}_0 \\ \partial_{x_i} \vec{f}_1(x) &= \tilde{A}_i(x) \vec{f}_0 & \Longrightarrow & \vec{f}_1(x) = \int dx A(x) \vec{f}_0 \\ \partial_{x_i} \vec{f}_2(x) &= \tilde{A}_i(x) \vec{f}_1(x) & \vec{f}_2(x) = \int dx A(x) \vec{f}_1(x) \\ \cdots & \cdots & \cdots \end{aligned}$$

Transcendental weight = number of successive integrations

Starting from $\vec{f}_0(x) = \vec{f}_0 \rightarrow \text{weight-0 constant}$

 \Rightarrow each order in ε has **uniform transcendental weight** .

≁) Q (N 10/34

The alphabet

Further simplification:

$$d\vec{f}(\vec{x}, \mathbf{\epsilon}) = \mathbf{\epsilon} d\left[\sum_{k} a_k \log \alpha_k(\vec{x})\right] \vec{f}(\vec{x}, \mathbf{\epsilon})$$

 a_k constant matrices. The list of functions $\{\alpha_1, \dots, \alpha_n\}$ is the **alphabet**.

Alphabet of 26 letter

$$\left\{ v_1 , v_3 + v_4 , v_1 - v_4 , v_1 + v_2 - v_4 , \Delta , \frac{a - \sqrt{\Delta}}{a + \sqrt{\Delta}} \right\} + \text{cyclic}$$

with $a = v_1 v_2 - v_2 v_3 + v_3 v_4 - v_1 v_5 - v_4 v_5 = tr[p_4 p_5 p_1 p_2]$ $(v_i \equiv s_{i,i+1})$ Gram determinant $\Delta = |2p_i \cdot p_j| = (tr_5)^2$ with $tr_5 = tr[\gamma_5 p_4 p_5 p_1 p_2]$.

> < □ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 11/34

Chen-Iterated integrals

At each order in $\boldsymbol{\epsilon}$ the solution of the differential equation

$$d\vec{f}(\vec{x}, \epsilon) = \epsilon d \left[\sum_{k} a_k \log \alpha_k(\vec{x}) \right] \vec{f}(\vec{x}, \epsilon)$$

is expressed in terms of Chen Iterated Integrals [Chen ('77)]

$$CII[\alpha_i] = \int_{\gamma} d\log \alpha_i \longrightarrow \log |\alpha_i|$$

$$CII[\alpha_i, \alpha_j] = \int d\log \alpha_j \int d\log \alpha_i$$

$$CII[\alpha_i, \alpha_j, \alpha_k] = \int d\log \alpha_k \int d\log \alpha_j \int d\log \alpha_i$$

$$\longrightarrow \int_{0 < t_1 < \dots < t_n < 1} dt_1 \dots dt_n \frac{d}{dt_1} \log \alpha_i(t_1) \dots \frac{d}{dt_n} \log \alpha_j(t_n)$$

Chen-Iterated integrals

Given their definition via differential of logarithms, each entry of the C.I.I. satisfies

$$CII[\ldots, \frac{\alpha_i}{\alpha_j}, \ldots] = CII[\ldots, \alpha_i, \ldots] - CII[\ldots, \alpha_j, \ldots]$$

and form a shuffle algebra

$$CII[\vec{\alpha}] CII[\vec{\beta}] = \sum_{\gamma \in \alpha_{III}\beta} CII[\vec{\gamma}].$$

E.g.:

$$CII[\alpha_i] = \log |\alpha_i|$$

$$CII[\alpha_p, \alpha_q] + CII[\alpha_q, \alpha_p] = CII[\alpha_p] CII[\alpha_q] = \log |\alpha_p| \log |\alpha_q|$$

Representation as of C.I.I & Polylogarithms: weights 1 & 2

At weight 1: only logarithms of the Mandelstam invariant can appear

$$f_{1,1}^{(i)} = CII[v_i] = \log(-v_i), \ i = 1 \dots 5$$

as other letters would give rise to un-physical singularities.

At weight 2 :

$$f_{2,1}^{(i)} = CII\left[\frac{v_i}{v_{i+2}}, \frac{v_{i+2} - v_i}{v_{i+2}}\right] \rightarrow \text{Li}_2\left(1 - \frac{v_i}{v_{i+2}}\right), \quad i = 1 \dots 5$$

are the only weight-2 functions appearing.

$$\operatorname{Li}_{n}(z) = \int_{0}^{z} \frac{dt_{n}}{t_{n}} \int_{0}^{t_{n}} \frac{dt_{n-1}}{t_{n-1}} \dots \int_{0}^{t_{2}} \frac{dt_{1}}{1-t_{1}} = \sum_{k \ge 1} \frac{z^{k}}{k^{n}}$$

At weight 3 :

the new independent functions appearing are

$$\begin{array}{rcl} f_{3,1} &= & CII\left[x_{1},1+x_{1},1+x_{1}\right] &\longrightarrow & -\mathrm{Li}_{3}\left(1+x_{1}\right) \\ f_{3,2} &= & CII\left[x_{2},1+x_{2},1+x_{2}\right] &\longrightarrow & -\mathrm{Li}_{3}\left(1+x_{2}\right) \\ f_{3,3} &= & CII\left[x_{1},1+1/x_{1},1+1/x_{1}\right] &\longrightarrow & -\mathrm{Li}_{3}\left(1+1/x_{1}\right) \\ f_{3,4} &= & CII\left[x_{1},1+1/x_{2},1+1/x_{2}\right] &\longrightarrow & -\mathrm{Li}_{3}\left(1+1/x_{2}\right) \end{array}$$

It is useful to define the ratios:

$$[x_1 = -v_1 / v_4, x_2 = -v_2 / v_4]$$
 and cyclic

E.g.:

$$\begin{aligned} & -\frac{\alpha_{6}}{\alpha_{4}} = -\frac{v_{1} - v_{4}}{v_{4}} \to 1 + x_{1} & \frac{\alpha_{9}}{\alpha_{4}} = \frac{v_{4} - v_{2}}{v_{4}} \to 1 + x_{2} \\ & \frac{\alpha_{6}}{\alpha_{1}} = \frac{v_{1} - v_{4}}{v_{4}} \to 1 + 1/x_{1} & -\frac{\alpha_{9}}{\alpha_{2}} = -\frac{v_{4} - v_{2}}{v_{2}} \to 1 + 1/x_{2} \\ & -\frac{\alpha_{11}}{\alpha_{4}} = -\frac{v_{1} + v_{2} - v_{4}}{v_{4}} \to 1 + x_{1} + x_{2} & -\frac{\alpha_{16}}{\alpha_{4}} = -\frac{v_{1} + v_{2}}{v_{4}} \to x_{1} + x_{2} \end{aligned}$$

At weight 3 the 4-pt integrals require the letter $1 + x_1 + x_2$

$$\begin{split} f_{3,5} &= CII[x_1, 1+x_1, x_2] + CII[x_2, 1+x_2, x_1] \\ &- CII[x_1, 1+x_1, 1+x_1+x_2] - CII[x_2, 1+x_2, 1+x_1+x_2] \\ &+ CII[x_1, x_2, 1+x_1+x_2] + CII[x_2, x_1, 1+x_1+x_2] \\ &- \zeta_2 CII[1+x_1+x_2] \end{split}$$

$$\rightarrow -\text{Li}_{3}(-x_{1}) - \text{Li}_{3}(-x_{2}) - \text{Li}_{3}\left(\frac{1+x_{1}+x_{2}}{x_{1}}\right) - \text{Li}_{3}\left(\frac{1+x_{1}+x_{2}}{x_{2}}\right) \\ + \log(-x_{2})\text{Li}_{2}\left(\frac{1+x_{1}+x_{2}}{x_{1}}\right) + \log(-x_{1})\text{Li}_{2}\left(\frac{1+x_{1}+x_{2}}{x_{2}}\right) + 3\zeta_{3}$$

together with their cyclic permutations.

These are the only 4-pt functions appearing at weight-3.

S & C

Representation as of C.I.I & Polylogarithms: 5-pt @ w3

At weight 3 there is only one genuine 5-point function appearing

$$f_{3,6} \equiv \Phi_5 = \frac{2}{3} d_{37,3} + \left\{ CII[\alpha_1/\alpha_3, \alpha_4/\alpha_8, \alpha_{21}] - CII[\alpha_4/\alpha_1, \alpha_3/\alpha_6, \alpha_{21}] \right. \\ \left. + \zeta_2 CII[\alpha_{21}] + \text{cycl.} \right\} \qquad \left[\alpha_{21} = \frac{a_1 + \sqrt{\Delta}}{a_1 - \sqrt{\Delta}} \right]$$

The fist two integrations can be easily performed analytically

$$\rightarrow \frac{2}{3}d_{37,3} + \sum_{\text{cyclic}} \int_{0}^{1} dt \,\partial_{t} \left(\log \frac{\tilde{a}_{1} + \sqrt{\tilde{\Delta}}}{\tilde{a}_{1} - \sqrt{\tilde{\Delta}}} \right) \left[\log \left(-\tilde{v}_{1} \right) \log \left(-\tilde{v}_{4} \right) \\ -\log \left(-\tilde{v}_{4} \right) \log \left(-\tilde{v}_{3} \right) + \frac{1}{2} \log^{2} \left(-\tilde{v}_{3} \right) - \frac{1}{2} \log^{2} \left(-\tilde{v}_{1} \right) + \zeta_{2} \\ + \text{Li}_{2} \left(1 - \tilde{v}_{1} / \tilde{v}_{3} \right) - \text{Li}_{2} \left(1 - \tilde{v}_{4} / \tilde{v}_{1} \right) \right], \qquad \tilde{v}_{i} = -1 - t \left(v_{i} - 1 \right)$$

$$I_{37}^{(4)} = 3\Phi_5/2$$

$$_{45,47} = 3\Phi_5$$

$$I_{51,58}^{(4)} = -\Phi_5$$

$$I_{59}^{(4)} = \Phi_5/2$$

$$I_{61}^{(4)} = -\Phi_5/2$$

all other five-point integrals can be written using four-point functions.

A D > A B > A B > A

Besides the products of lower weight functions and the Li₄ functions

$$\begin{aligned} f_{4,1} &= CII[x_1, 1+x_1, 1+x_1, 1+x_1] &\longrightarrow -\text{Li}_4(1+x_1) \\ f_{4,2} &= CII[x_2, 1+x_2, 1+x_2, 1+x_2] &\longrightarrow -\text{Li}_4(1+x_2) \\ f_{4,3} &= CII[x_1, 1+1/x_1, 1+1/x_1, 1+1/x_1] &\longrightarrow -\text{Li}_4(1+1/x_1) \\ f_{4,4} &= CII[x_1, 1+1/x_2, 1+1/x_2, 1+1/x_2] &\longrightarrow -\text{Li}_4(1+1/x_2) \end{aligned}$$

The additional functions appears

$$f_{4,5} = CII[x_1, x_1, x_1, x_1] - 2CII[x_1, x_1, x_1, 1+x_1]$$

$$\rightarrow \frac{1}{6} \log^{3}(-x1) \left[-\log(1+1/x1) - \log(1+x1) \right] - \frac{1}{2} \log^{2}(-x1) \left[-\operatorname{Li}_{2}(-1/x1) + \operatorname{Li}_{2}(-x1) \right] + \log(-x1) \left[\operatorname{Li}_{3}(-1/x_{1}) + \operatorname{Li}_{3}(-x_{1}) \right] + \operatorname{Li}_{4}(-1/x_{1}) - \operatorname{Li}_{4}(-x_{1})$$

For 4-point topologies Li_{2,2} functions are needed

$$\rightarrow \text{Li}_{2,2}(z_1, z_2) = \sum_{k_1 > k_2 \ge 1} \frac{z_1^{k_1}}{k_1^2} \frac{z_2^{k_2}}{k_2^2}$$

The letter $v_1 + v_2$ makes its appearence only at weight 4 and only in \longrightarrow which also contains Li_{2,2} function

イロト イポト イヨト イヨト

A useful representation for the four-points integrals is

$$\int_0^1 dt \,\partial_t \,\log \alpha_i(t) \,[\text{analytic w3 function}](t)$$

イロト イ理ト イヨト イヨト

21/34

Representation as of C.I.I & Polylogarithms: 5-pt @ w4

In some 5-point integrals Δ does not appear as a letter. They all however depend on the 21th through 25th letters of the alphabet

$$r_{i} = \frac{a_{i} - \sqrt{\Delta}}{a_{i} + \sqrt{\Delta}} \qquad i = 1, \dots, 5 \qquad \text{and} \\ a_{i} = \text{Cyclic}_{i} \Big[v_{1} v_{2} - v_{2} v_{3} + v_{3} v_{4} - v_{1} v_{5} - v_{4} v_{5} \Big]$$

can be written in terms of the functions

$$f_{4,8}^{(i)} = \int d \log r_i \, \Phi_5 \, , \quad i = 1, \dots, 5$$

$$I_{38}^{(4)} = \frac{3}{2}f_{4,8}^{(4)} + \dots$$

$$I_{40,44,46}^{(4)} = \frac{3}{2}\left(f_{4,8}^{(p)} - f_{4,8}^{(p+2)}\right) + \dots [p = 5, 1, 3]$$

$$I_{49,56}^{(4)} = -f_{4,8}^{(p)} - f_{4,8}^{(p+1)} + \dots [p = 5, 2]$$

$$I_{50,57}^{(4)} = 2\left(f_{4,8}^{(p)} + f_{4,8}^{(p+1)} - f_{4,8}^{(p+3)}\right) + \dots [p = 5, 2]$$

$$I_{60}^{(4)} = 2f_{4,8}^{(4)} - f_{4,8}^{(1)} - f_{4,8}^{(2)} + \dots$$

The remaining 5-point integrals depend on the 26^{th} letter of our alphabet Δ through

$$f_{4,9} = \int d \log \Delta \Phi_5$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少へで 23/34

Due to the 1-fold integral representation of Φ_5 the functions

$$\int d \log r_i \Phi_5$$
, $i = 1, \dots, 5$ and $\int d \log \Delta \Phi_5$,

come about as 2-fold integrals

$$\int_0^1 dt_2 \,\partial_{t_2} \log \alpha_i(t_2) \,\int_0^{t_2} dt_1 \,\partial_{t_1} \,\log \alpha_j(t_1) \,[\text{analytic w2 function}](t_1)$$

by exchanging order of integration it easily becomes a 1-fold integral [Henn,Caron-Huot]

• • • • • • • • • • • •

$$\rightarrow \int_0^1 dt_1 \,\partial_{t_1} \log \alpha_j(t_1) \,[\text{analytic w2 function}](t_1) \left[\int_{t_1}^1 dt_2 \,\partial_{t_2} \,\log \alpha_i(t_2) \right]$$

25/34

Representation as Goncharov Polylogarithms

Goncharov Polylogarithms: very well suited for numerical evaluation [Goncharov, implemented in C++ within GiNaC by Vollinga, Weinzierl]

$$G(a_1, a_2, \dots, a_n; x) = \int_0^x \frac{dt}{t - a_1} G(a_2, \dots, a_n; t) ,$$

th $G(x) = 1$, $G(0) = 0$, and $G(\vec{0} : x) = \frac{1}{1} \log^n x$

with G(x) = 1, G(0) = 0 and $G(\vec{0}_n; x) = \frac{1}{n!} \log^n x$.

$$G(\vec{a}_{n}; x) = \frac{1}{n!} \log^{n} \left(1 - \frac{x}{a}\right)$$

$$G(\vec{0}_{n-1}, a; x) = -\text{Li}_{n} \left(\frac{x}{a}\right)$$

$$G(\vec{0}_{n-1}, \vec{a}_{p}; x) = (-1)^{p} S_{n,p} \left(\frac{x}{a}\right)$$

$$G(0, 1, 0, 1/y; x) = \text{Li}_{2,2}(x, y)$$

ヘロト 人間 とくほと くほど

Simple examples:

Representation as Goncharov Polylogarithms

With a suitable parametrization (Momentum Twistor variables) [Hodges (2009)]

$$v_{1} = x_{1},$$

$$v_{2} = x_{1}x_{2}x_{4},$$

$$v_{3} = (x_{1}/x_{2})[x_{3}(x_{4}-1) + x_{2}x_{4} + x_{2}z_{3}(x_{4}-x_{5})],$$

$$v_{4} = x_{1}x_{2}(x_{4}-x_{5}),$$

$$v_{5} = x_{1}x_{3}(1-x_{5})$$

the Gram determinant becomes a perfect square

$$\sqrt{\Delta} = -x_1^2 \Big[x_2 x_4 (x_5 - 1) + x_3 \Big(1 + x_2 x_5 + x_4 (-2 - x_2 + x_5) \Big) \Big]$$

After partial-fractioning

$$d\vec{f}(\vec{x},\varepsilon) = \varepsilon d \left[\sum_{k} a_{k} \log \alpha_{k}(\vec{x}) \right] \vec{f}(\vec{x},\varepsilon) \quad \longrightarrow \quad \partial_{x_{i}}\vec{f} = \varepsilon \sum_{k} \frac{\tilde{a}_{k}}{x_{i} - x_{i,k}} \vec{f}$$

the solution can be expressed in terms of Goncharov Polylogs.

√) Q (~
26/34

Representation as Goncharov Polylogarithms

Integration path: polygonal chain along x_i axes $\longrightarrow \{x_2, x_5, x_3, x_4, x_1\}$.

• *x*₂ is the first variable to be integrate to avoid the appearance of additional square roots from partial fractioning.

$$\partial_{x_2} I'^n_W(x_2; \{x_5, x_3, x_4, x_1\}_{B.}) = \sum_{j,k} \frac{a_{2,j,k}}{x_2 - x_{2,k}(\{x_5, x_3, x_4, x_1\}_{B.})} I'^j_{W-1}(x_2; \{x_5, x_3, x_4, x_1\}_{B.})$$

$$\partial_{x_5} I''^n_W(x_2, x_5; \{x_3, x_4, x_1\}_{B.}) = \sum_{j,k} \frac{a_{5,j,k}}{x_5 - x_{5,k}(x_2; \{x_3, x_4, x_1\}_{B.})} I''^j_{W-1}(x_2, x_5; \{x_3, x_4, x_1\}_{B.})$$

• we integrate x_1 last as the diff. eq. takes a simple diagonal form

$$\partial_{x_1} I_W^n(x_2, x_5, x_3, x_4, x_1) = \sum_{j,k} \frac{a_{1,j,k}}{x_1 - x_{1,k}(x_2, x_5, x_3, x_4)} I_{W-1}^j(x_2, x_5, x_3, x_4, x_1) = -\frac{2}{x_1} I_{W-1}^n(x_2, x_5, x_3, x_4, x_1)$$

Representation as Goncharov Polylogarithms

The integration leads to expressions in terms of Goncharov polylogarithms

$$\int_{x_{i,\mathrm{B.}}}^{x_i} \frac{dx'_i}{x'_i - x_{i,\mathrm{pole}}} G(\ldots; x'_i) = G(x_{i,\mathrm{pole}}, \ldots; x_i) - G(x_{i,\mathrm{pole}}, \ldots; x_{i,\mathrm{B.}})$$

Since parts of the integration path fall outside of the Euclidean region, a sign prescription to cancel imaginary parts is necessary:

$$\begin{array}{rcl} G(\ldots;x_1) \ , \ G(\ldots;-1) & \longrightarrow & - \\ G(\ldots;x_2) \ , \ G(\ldots;\frac{1+\sqrt{5}}{2}) & \longrightarrow & - \\ G(\ldots;x_3) \ , \ G(\ldots;1) & \longrightarrow & + \\ G(\ldots;x_4) \ , \ G(\ldots;\frac{-1+\sqrt{5}}{2}) & \longrightarrow & - \\ G(\ldots;x_5) \ , \ G(\ldots;0) & \longrightarrow & + \end{array}$$

・ロト・日本・日本・日本・日本

Boundary conditions

Boundary values can be obtained from physical conditions, in kinematic limits with **singular diff. eq.** but **regular integrals**.

No singularities in the Euclidean region $s_{i,i+1} < 0$.

Un-physical singularities appear in the limit

and they need to cancel.

 \longrightarrow no need to compute any additional integrals.

Boundary conditions

 $\Delta=0$ defines hypersurface where divergencies need to cancel.

The symmetric point $\vec{x}_{sym} = \{-1, -1, -1, -1, -1\}$

is connected to the $\Delta = 0$ surface by

$$\vec{f}(\vec{x},\varepsilon) = P \exp\left[\varepsilon \int_{\gamma} dA\right] \vec{f}(\vec{x}_0,\varepsilon)$$

path $\gamma = \, \{ - \frac{y}{(1-y)^2}, -1, -1, -1, -1 \} \, \longrightarrow \, \text{reduced alphabet} \, .$

Sym. pt
$$\rightarrow y = \frac{3 \pm \sqrt{5}}{2}$$

 $\Delta = 0 \rightarrow y = -1$

Applications: All-plus amplitude

We have applied our integrals to the **all-plus amplitude** (leading-colour). [Badger, Frellesvig, Zhang (2013)]

 $\mathcal{A}_5\,(1^+,2^+,3^+,4^+,5^+)|_{leading\,colour} =$

$$g_s^7 N_c^2 c_{\Gamma}^2 \sum_{\sigma \in S_5} \operatorname{tr}(T^{a_{\sigma(1)}} T^{a_{\sigma(2)}} T^{a_{\sigma(3)}} T^{a_{\sigma(4)}} T^{a_{\sigma(5)}}) \sum_{\text{cycl}} A_5^{(2)}(\sigma(1)^+, \sigma(2)^+, \sigma(3)^+, \sigma(4)^+, \sigma(5)^+)$$

At one loop we have

[Bern, Dixon, Dunbar, Kosower]

$$\begin{aligned} A^{(1)}(1^{+}2^{+}3^{+}4^{+}5^{+}) &= \frac{-i\epsilon(1-\epsilon)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle} \left(2(2-\epsilon)\operatorname{tr}_{5}I^{[10-2\epsilon]}_{[5;12345]}[1] \right. \\ &+ s_{12}s_{23}I^{[8-2\epsilon]}_{4;1234}[1] + s_{23}s_{34}I^{[8-2\epsilon]}_{4;2345}[1] + s_{34}s_{45}I^{[8-2\epsilon]}_{4;3451}[1] + s_{45}s_{51}I^{[8-2\epsilon]}_{4;5123}[1] \right) \end{aligned}$$

$$\epsilon^{0} \rightarrow \frac{i}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle} \left(-\frac{1}{6} F_{5}^{(1)} \right) \quad , \quad F_{5}^{(1)} = v_{1}v_{2} + v_{2}v_{3} + v_{3}v_{4} + v_{4}v_{5} + v_{5}v_{1} + \mathrm{tr}_{5} + v_{5}v_{2} + v_{$$

Applications: All-plus amplitude

The infrared and ultraviolet structure is described by the one-loop amplitude

$$A_{5\,\text{plus}}^{(2)} = A_{5\,\text{plus}}^{(1)} \left[-\sum_{i=1}^{5} \frac{1}{\varepsilon^2} \left(\frac{\mu^2}{-\nu_i} \right)^{\varepsilon} \right] + \frac{i}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle} \left(-\frac{1}{6} F_5^{(2)} \right) + \mathcal{O}(\varepsilon) \,,$$

For the finite remainder we find: $(v_i = s_{i,i+1})$ [arXiv:1511.05409 [hep-ph]]

$$F_{5}^{(2)} = \frac{5\pi^{2}}{12}F_{5}^{(1)} + \sum_{i=0}^{4}\sigma^{i}\left\{\frac{v_{5}\mathrm{tr}\left[(1-\gamma_{5})\not{p}_{4}\not{p}_{5}\not{p}_{1}\not{p}_{2}\right]}{(v_{2}+v_{3}-v_{5})}I_{23,5} + \frac{1}{6}\frac{\mathrm{tr}\left[(1+\gamma_{5})\not{p}_{4}\not{p}_{5}\not{p}_{1}\not{p}_{2}\right]^{2}}{v_{1}v_{4}} + \frac{10}{3}v_{1}v_{2} + \frac{2}{3}v_{1}v_{3}\right\}$$

with $I_{23,5}$ one-loop two-mass easy box function in six dimensions.

$$I_{23,5} = \zeta_2 - \text{Li}_2\left(\frac{v_5 - v_3}{v_2}\right) - \text{Li}_2\left(\frac{v_5 - v_2}{v_3}\right) + \text{Li}_2\left(\frac{(v_5 - v_2)(v_5 - v_3)}{v_2v_3}\right)$$

<ロ > < 部 > < 書 > < 書 > こ > こ の Q (や 32/34)

Checks

All master integrals checked against FIESTA in the Euclidean region.

All four point sub-topologies checked against [Gehrmann, Remiddi]

Amplitude:

Checks

All master integrals checked against FIESTA in the Euclidean region.

All four point sub-topologies checked against [Gehrmann, Remiddi]

Amplitude:

Checked against numerical results of [Badger, Frellesvig, Zhang (2013)]

Double and single pole cancellation provides non-trivial check.

Factorization properties of scattering amplitudes in the soft and **collinear** limit allow to connect provides a way to check them. When $p_4||p_5$, we have

$$\begin{split} A_5^{(2)}(1^+,2^+,3^+,4^+,5^+) \rightarrow & \text{Split}^{P \rightarrow 45\,(1)}(P^-,4^+,5^+)A_4^{(1)}(1^+,2^+,3^+,P^+) \\ & + \text{Split}^{P \rightarrow 45\,(1)}(P^+,4^+,5^+)A_4^{(1)}(1^+,2^+,3^+,P^-) \\ & + \text{Split}^{P \rightarrow 45\,(0)}(P^-,4^+,5^+)A_4^{(2)}(1^+,2^+,3^+,P^+) \end{split}$$

Ingredients: Bern,Dixon,Kosower (2014), Badger,Glover (2014), Bern,DeFreitas,Dixon (2002) Recomputed by [Dunbar, Perkins (2016)] using on-shell recursions

Summary and Outlook

- Five-point two-loop MIs (planar) obtained using the Differential-Equation method, with MIs basis that makes the diff. eq. system canonical.
- Boundary conditions obtained by requiring the cancellation of spurious singularities in diff. eqs. → No further integration required.
- We have derived an analytic formula for the leading-color contribution of the all-plus 5-gluon amplitude.

Summary and Outlook

- Five-point two-loop MIs (planar) obtained using the Differential-Equation method, with MIs basis that makes the diff. eq. system canonical.
- Boundary conditions obtained by requiring the cancellation of spurious singularities in diff. eqs. → No further integration required.
- We have derived an analytic formula for the leading-color contribution of the all-plus 5-gluon amplitude.
- Analytic continuation outside Euclidean region (\rightarrow physical region).
- Non-planar integrals: in progress.
- Application to other amplitudes.