Tools for Spectroscopy

Michael Pennington Durham, September 2017

 $= \sum_{\substack{q=u,d,s,\\c,b,t}} \bar{q} (i \gamma_{\mu} D^{\mu} - m_{q}) q$

Hadrons: effective degrees of freedom

 $= \sum_{q=u,d,s,} \bar{q} (i \gamma_{\mu} D^{\mu} - m_{q}) q$ Q c,b,t

Hadrons: effective degrees of freedom how do these depend on flavour, *b*,*c*,*s*,*d*,*u*

 $= \sum_{q=u,d,s,} \bar{q} (i \gamma_{\mu} D^{\mu} - m_{q}) q$ c,b,t

Hadrons: effective degrees of freedom how do these depend on flavour, *b*,*c*,*s*,*d*,*u* Hadron interactions: universality

 $= \sum \bar{q} (i \gamma_{\mu} D^{\mu} - m_{q}) q$ q=u,d,s, c,b,t

Hadron States

Hadron States

Breit-Wigner
$$1$$
 $S = E^2$ $M^2 - S - iM\Gamma$

Hadron States

analyticity & complex energy plane

Landscape to be explored

Breit-Wigner
$$\frac{1}{M^2 - s - iM\Gamma}$$

merely an approximation valid in the region of the pole

Quark model spectrum

ground states

Quark model spectrum

Baryon spectrum from ANL-Osaka & Bonn-Ga

Baryon spectrum from ANL-Osaka & Bonn-Ga

N*(1440) colour wave-function

Roper

N*(1440) colour wave-function

Roper

N*(1440) colour wave-function

Roper

positronium

positronium

X(3872) & 1++ charmonium

 m_{π} 296 MeV

Prelovsek & Leskovec

Lee, De Tar, Na, Mohler

X(3872) & 1++ charmonium

 m_{π} 296 MeV

Prelovsek & Leskovec

Lee, De Tar, Na, Mohler

XYZ states

XYZ states

tetraquark

	1		Observed	Confirmed
2003		X(3872) X(3872)	Belle	
		X(3915) [as Y(3940)]		Belle
2004		Y(4260)	Rollo	BaBar
		χ _{c2} (2P) [as 2(3930)] V(1260)	Delle	
2005		X(3940), Y(4008), Y(4660)	Belle	OLLO-C
		Y(4360)	BaBar	
2006		Y(4360)		Belle
2000		X(3915) [as Y(3940)] X(3940)		BaBar
2007		Z ⁺ (4050), X(4160), Z ⁺ (4250)		Dono
2007		Z+(4430), X(4630)	Belle	
		Y(4140)		CDF
2008		X(3915), X(4350), Y _b (10888 Y ₂₀ (2P) [as 7(3930)]	Belle	BaBar
		Y(4274)	CDF	Dubu
2009		X(3915)		BaBar
		Z _b +(10610)		Belle
2010		Z _b ⁻ (10650) X(3823), Z⊾⁰(10610)	Belle	Delle
2010		Z.+(3900). Z.+(4020)	BESIII	
2044		Z ^{c+} (3900) ^{, -c} (10-0)		Belle
2011		∠ _c °(3900) 7 ⁰(4020)	CLEO-C BESIII	
		Y(4140)	BLUIII	D0, CMS
2012		Y(4274)		CMS
		Y(4660) 7 +(4020)	BESIII	BaBar
2013		Z _c (4200)	DESIII	Belle
		Z+(4240)		LHCb
2014		$Z^{+}(4430)$		
		Z _c *(4025), Z _c *(3900), Z _c *(402)	Belle	DESIII
2015		Y(4230)	BESIII	
2013		$P_{c}^{+}(4380), P_{c}^{+}(4450)$	LHCb	
		Y _b (10880) X+(5568)	DO	NO I Belle
2016		X+(5568)		NOT LHCb
		Y(4140), Y(4274)		LHCb
2017		X(4500), X(4700)	LHCb	
	1			

LHCb discoveries 2017

LHCb discoveries 2017

$1 {}^{3}F_{4}$	$1 {}^{3}D_{3}$	χ_{c2}	J/ψ
$J^{PC}=4^{++}$	$J^{PC} = 3^{}$	$J^{PC}=2^{++}$	$J^{PC} = 1^{}$
4095 MeV	3849 MeV	3556 MeV	3097 MeV
$\Gamma = 8.3 \text{ MeV}$	$\Gamma = 0.5 \text{ MeV}$	$\Gamma=2.0 \text{ MeV}$	$\Gamma = 0.3 \text{ MeV}$
$E_{\gamma}{=}246~{ m MeV}$	$E_{\gamma}{=}338~{\rm MeV}$	$E_\gamma{=}413~{\rm MeV}$	-

$1 {}^{3}F_{4}$	$1 {}^{3}D_{3}$	χ_{c2}	J/ψ
$J^{PC} = 4^{++}$	$J^{PC} = 3^{}$	$J^{PC}=2^{++}$	$J^{PC} = 1^{}$
4095 MeV	3849 MeV	3556 MeV	3097 MeV
$\Gamma = 8.3 \text{ MeV}$	$\Gamma = 0.5 \text{ MeV}$	$\Gamma = 2.0 \text{ MeV}$	$\Gamma = 0.3 \text{ MeV}$
E_{γ} =246 MeV	$E_{\gamma}{=}338~{ m MeV}$	$E_{\gamma}{=}413 \text{ MeV}$	-

 ${}^{3}F_{4}$

³D₃

Ε

4.0

3.5

c oc

3

p

3.0 Lange, Prencipe et al.

$1 {}^{3}F_{4}$	$1 {}^{3}D_{3}$	χ_{c2}	J/ψ
$J^{PC} = 4^{++}$	$J^{PC} = 3^{}$	$J^{PC}=2^{++}$	$J^{PC} = 1^{}$
4095 MeV	3849 MeV	3556 MeV	3097 MeV
Γ =8.3 MeV	$\Gamma = 0.5 \text{ MeV}$	$\Gamma = 2.0 \text{ MeV}$	$\Gamma = 0.3 \text{ MeV}$
$E_{\gamma}{=}246~{ m MeV}$	$E_{\gamma}{=}338~{\rm MeV}$	$E_\gamma{=}413~{\rm MeV}$	-

p

p

Lange, Prencipe et al.

$1 {}^{3}F_{4}$	$1 {}^{3}D_{3}$	χ_{c2}	J/ψ
$J^{PC} = 4^{++}$	$J^{PC} = 3^{}$	$J^{PC}=2^{++}$	$J^{PC} = 1^{}$
4095 MeV	3849 MeV	3556 MeV	3097 MeV
$\Gamma = 8.3 \text{ MeV}$	$\Gamma = 0.5 \text{ MeV}$	$\Gamma = 2.0 \text{ MeV}$	$\Gamma = 0.3 \text{ MeV}$
E_{γ} =246 MeV	$E_\gamma{=}338~{\rm MeV}$	$E_{\gamma}{=}413~{\rm MeV}$	-

p

þ

Lange, Prencipe et al.

precision research

precision research

precision tools

precision research

accurate modelling

UQCD

precision tools

1

1.5

 $m^2(K^0_s \pi^+)$

2.5

2

3

f₀(980)

ρ**(**770)

3.5

1 <mark>ک</mark> 0.8ع

0.6

0.4

0.2

0

0

0.5

.

1

1.5

 $m^2(K^0_s \pi^+)$

2.5

2

3

ρ(770)

3.5

0.6

0.4

0.2

0

0

0.5

Szczepaniak et al

ar S-MATRIX RELOADED

R.J. EDEN P.V. LANDSHOFF D.I.OLIVE J.C.POLKINGHORNE

ambridge University Press

Weapons: analyticity unitarity

S-MATRIX RELOADED

R.J. EDEN P.V. LANDSHOFF D.I.OLIVE J.C.POLKINGHORNE

Ambridge University Press

 $\pi_1 a_1 \rightarrow \pi \pi \pi$

$$\Lambda_b \rightarrow K^- J/\psi p$$

NEWS

Photoproduction:

High energy model for η' beam asymmetry photoproduction: $\underline{\gamma p \rightarrow \eta(') p}$ High energy model for η photoproduction: $\underline{\gamma p \rightarrow \eta p}$

- High energy model for π^0 photoproduction: $\gamma p \rightarrow \pi 0 p$
- High energy model for J/ψ photoproduction: $yp \rightarrow J/\psi p$

Hadroproduction:

Pion-nucleon scattering: $\underline{mN} \rightarrow \underline{mN}$ amplitude Finite energy sum rules $\underline{mN} \rightarrow \underline{mN}$ FESR page

Kaon-nucleon scattering: $\underline{K N \rightarrow K N}$

Light meson Decay:

 η meson into three pions: $\underline{\eta \rightarrow 3\pi}$ vector meson into three pions: $\omega, \phi \rightarrow 3\pi$

Joint Physics Analysis Center Team

Indiana University

- Adam Szczepaniak Professor
- Geoffrey Fox Professor
- Emilie Passemar Professor
- Tim Londergan Professor
- Vincent Mathieu Postdoctoral researcher
- Ina Lorenz Postdoctoral researcher
- Andrew Jackura PhD student

Jefferson Lab

- Michael R. Pennington Professor
- Viktor Mokeev Professor
- Vladiszlav Pauk Postdoctoral researcher
- Alessandro Pilloni Postdoctoral researcher

George Washington University

- Ron Workman Professor
- Michael Doring Professor

Universidad Nacional Autonoma de Mexico

Cesar Fernandez-Ramirez Professor

Johannes Gutenberg University, Mainz

Igor Danilkin Postdoctoral researcher

Bonn University

Misha Mikhasenko PhD student

University of Valencia

Astrid Hiller Blin PhD student

Ghent University

· Jannes Nys PhD student

• what are the relevant degrees of freedom?

- what are the relevant degrees of freedom?
- what is the Fock space decomposition of each hadron what are their patterns -- flavour, spin, ...? what does this reveal about the internal dynamics?

- what are the relevant degrees of freedom?
- what is the Fock space decomposition of each hadron what are their patterns -- flavour, spin, ...? what does this reveal about the internal dynamics?
- how is this connected to QCD?

- what are the relevant degrees of freedom?
- what is the Fock space decomposition of each hadron what are their patterns -- flavour, spin, ...? what does this reveal about the internal dynamics?
- how is this connected to QCD?
- are the appropriate operators studied on the lattice (or continuum)?

- what are the relevant degrees of freedom?
- what is the Fock space decomposition of each hadron what are their patterns -- flavour, spin, ...? what does this reveal about the internal dynamics?
- how is this connected to QCD?
 are the appropriate operators studied on the lattice (or continuum)?

 multi-particle scattering on the lattice and continuum
 methods of S-matrix theory poles, triangle singularities, threshold cusps, ...

what are the relevant degrees of freedom?

how are hadrons really connected to QCD?

