

Associated production of heavy flavour

Darren Price, University of Manchester UK Flavour 2017, Durham, UK, September 6th '17

MANCHESTER

So you want to measure the associated production of HF at ATLAS?

So you want to measure the associated production of HF at ATLAS?

Pros 🗸

Cons X

Measuring associated HF production

The University of Manchester

ESTER

MANCH

So you want to measure the associated production of HF at ATLAS?

Pros 🗸

Cons X

Wide rapidity and ~hermetic azimuthal coverage

Muon p_T(μ)>2.5 (3.5) GeV, |η(μ)|ε (1.3,2.5] (ε[0,1.3]) Tracking to p_T~100 MeV (in principle)

MANCHESTER

So you want to measure the associated production of HF at ATLAS?

Pros 🗸

Cons X

Wide rapidity and ~hermetic azimuthal coverage

Measuring associated HF production

The University of Manchester

ESTER

MANCH

So you want to measure the associated production of HF at ATLAS?

Pros 🗸

Cons X

Triggering restrictions

Wide rapidity and ~hermetic azimuthal coverage

Muon reconstruction performance

MANCHESTER

So you want to measure the associated production of HF at ATLAS?

Pros 🗸

Cons X

Wide rapidity and ~hermetic azimuthal coverage

Muon reconstruction performance

Triggering restrictions

Associated production relatively rare

So you want to measure the associated production of HF at ATLAS?

Pros 🗸

Cons X

Wide rapidity and ~hermetic azimuthal coverage

Triggering restrictions

Muon reconstruction performance

Associated production relatively rare

Associated production relatively rare

Measuring associated HF production

Associated production relatively rare
ATLAS has lots of pp collisions! ^(C)

MANCHESTER

So you want to measure the associated production of HF at ATLAS?

Wide rapidity and ~hermetic azimuthal coverage

Pros 🗸

Muon reconstruction performance

Associated production relatively rare

Associated production relatively rare

Cons X

Triggering restrictions

Pileup

ATLAS has lots of pp collisions! 😌

Measuring associated HF production

The University of Manchester

MANCHESTER

nuon reconstruction performanc

Pileup

ATLAS has lots of pp collisions! 😂

MAN

Barger, Fleming, Phillips [Phys.Lett. B371 (1996) 111-116]:

 $^{66}\psi + W$ production offers a clean test of the color-octet mechanism, $_{22}$

Li, Song, Zhang, Ma [Phys. Rev. D 83, 014001 (2011)]:

⁶⁶ including the NLO QCD corrections up to the $\alpha_s^3 v^7$ order, there are only color-octets $c\bar{c}[{}^{1}S_0^{(8)}], c\bar{c}[{}^{3}S_1^{(8)}]$ and $c\bar{c}[{}^{3}P_J^{(8)}] (J = 0, 1, 2)$, but no color-singlet contribution exists in the $pp \rightarrow J/\psi + W + X$ process. Therefore, the $J/\psi + W$ production at the LHC is an ideal ground to study the COM.

Lansberg, Lorce, [Phys.Lett. B726 (2013) 218-222, Phys.Lett. B738 (2014) 529-529] point out that this is not necessarily the case:

66

We have shown that the LO CSM contributions to direct $J/\psi + W^{\pm}$ are not negligible compared to the contribution arising from CO transitions which were previously thought to be dominant.

Darren

Price

Sep 6th

Searching for W bosons + J/ψ at ATLAS

The University of Manchester

ESTER

MANCH

A strength of the general purpose detectors like ATLAS is triggering on and reconstructing vector bosons:

Searching for W bosons + J/ψ at ATLAS

The University of Manchester

TER

MAN

Using 4.5 fb⁻¹ of 7 TeV pp collision data, select W($\rightarrow \mu \nu$) boson candidates with a J/ ψ ($\rightarrow \mu \mu$) candidate in the same event.

(Additional ID criteria applied to suppress fake-W backgrounds: purity over efficiency)

ssociated

Iction

NNK UNK

A signal?

MANCH

Assessment of backgrounds from QCD multijet, $B_c \rightarrow J/\psi \ \mu^{\pm}\nu X$, top production, W+b signal leakage, mis-reconstructed Z, combinatorics.

Important background to assess from "*pile up*": when W and J/ ψ produced in different proton-proton collisions that occur in the same bunch crossing

MANCH

Assessment of backgrounds from QCD multijet, $B_c \rightarrow J/\psi \ \mu^{\pm}\nu X$, top production, W+b signal leakage, mis-reconstructed Z, combinatorics.

Important background to assess from "*pile up*": when W and J/ ψ produced in different proton-proton collisions that occur in the same bunch crossing

Assessment of backgrounds from QCD multijet, $B_c \rightarrow J/\psi \ \mu^{\pm}\nu X$, top production, W+b signal leakage, mis-reconstructed Z, combinatorics.

Important background to assess from "pile up": when W and J/ ψ produced in different proton-proton collisions that occur in the same bunch crossing

W + prompt J/ ψ backgrounds

The University of Manchester

ESTER

MANCH

JHEP 1404 (2014) 172

Assessment of backgrounds from QCD multijet, $B_c \rightarrow J/\psi \ \mu^{\pm}\nu X$, top production, W+b signal leakage, mis-reconstructed Z, combinatorics.

Yields from two-dimensional fit			
Process	Barrel	Endcap	Total
Prompt J/ψ	$10.0^{+4.7}_{-4.0}$	$19.2^{+5.8}_{-5.1}$	$29.2^{+7.5}_{-6.5}(*)$
Non-prompt J/ψ	$27.9^{+6.5}_{-5.8}$	$13.9^{+5.3}_{-4.5}$	$41.8^{+8.4}_{-7.3}$
Prompt background	$20.4_{-5.1}^{+5.9}$	$18.8\substack{+6.3\\-5.3}$	$39.2^{+8.6}_{-7.3}$
Non-prompt background	$19.8^{+5.8}_{-4.9}$	$19.2^{+6.1}_{-5.1}$	$39.0^{+8.4}_{-7.1}$
<i>p</i> -value	8.0×10^{-3}	1.4×10^{-6}	2.1×10^{-7}
Significance (σ)	2.4	4.7	5.1

(*) of which 1.8 ± 0.2 originate from pileup

This is a rare process! One of the rarest that could have been discovered in the Run-1 LHC dataset.

MANCH

W+prompt J/ ψ data can arise from single parton scattering processes, but double parton scattering may also play a role!

ESTER

DPS $d\sigma_{W+J/\psi}$

MANCH

JHEP 1404 (2014) 172

Determine expected rate of DPS if σ_{eff} is as for Wjj production ~ 15 mb

DPS ansatz <u>assumes</u> independent hard scatters.

Must fail at some point, otherwise can have x₁+x₂>1, but work under assumption of reasonable approximation

 $d\sigma_{W+J/\psi}^{\text{DPS}} = \frac{d\sigma_W \otimes d\sigma_{J/\psi}}{\sigma_{\text{eff}}}$

Associated production of heavy flavours **Darren Price** Sep 6th 2017

 $\Delta \phi(W, J/\psi)$

The University of Manchester

STER

MAN

Determine expected rate of DPS if σ_{eff} is as for Wjj production ~ 15 mb

DPS ansatz <u>assumes</u> independent hard scatters.

Must fail at some point, otherwise can have x₁+x₂>1, but work under assumption of reasonable approximation

Estimate DPS contribution to the signal using the data

This is *not* a fit!

JHEP 1404 (2014) 172

W + prompt J/ ψ production rates

The University of Manchester

MANCHESTER

JHEP 1404 (2014) 172

Correcting for detector effects / efficiencies can extract rate:

MAN

JHEP 1404 (2014) 172

Can go further and measure differential rate, DPS component re-evaluated from data in each p_T interval

Both single and double parton scattering components observed in data

(f_{DPS}≈40%!)

Searching for $Z+J/\psi$ production

The University of Manchester

MANCHESTER

Eur.Phys.J. C75 (2015) 5, 229

 J/ψ invariant mass [GeV]

 J/ψ invariant mass [GeV]

Associated

The University of Manchester

ESTER

MANCH

Eur.Phys.J. C75 (2015) 5, 229

Extract signal, split by prompt/non-prompt, and assess backgrounds. Double parton scattering component again estimated from data and crosschecked on azimuthal angular correlation distribution

Associated production of heavy flavours **Darren Price** Sep 6th 2017 MANCH

Measure differential rate versus J/ ψ p_T for prompt and non-prompt production

$\frac{ESTER}{1824}$ **Z** + prompt J/ ψ production rates

MANCH

The University of Manchester

Eur.Phys.J. C75 (2015) 5, 229 Nucl.Phys. B916 (2017) 132

Measure differential rate versus J/ ψ p_T for prompt and non-prompt production

Probe of low b-quark p_T in Z+b

MANCHESTER

Can extract limits on maximum DPS / lowest $\sigma_{\rm eff}$ from fit to data

 $Z + J/\psi$: limits on σ_{eff}

MANCHESTER

Eur. Phys. J. C77 (2017) 76

ESTER

MANCH

Eur. Phys. J. C77 (2017) 76

Use data-driven approach to derive kinematic templates for DPS contribution

DPS from J/ ψ candidates event-mixing seeded by DPS-enriched $\Delta y \ge 1.8$ and $\Delta \phi \le \pi/2$ region.

Normalisation of DPS fixed from data in DPS-enriched region.

MANCHESTER

Eur. Phys. J. C77 (2017) 76

Total prompt J/ ψ pair differential production rates (and DPS estimate):

Prompt J/\psi pair production rates

The University of Manchester

MANCHESTER

Data-driven DPS compared to LO DPS prediction Phys. Rev. D 95, 034029 (2017)

Fraction of DPS from data-driven est. ~9%

SPS NLO^{*} singlet predictions (HELAC-Onia) describe data: some discrepancies at low p_{τ} and high mass

Eur. Phys. J. C77 (2017) 76

ATLAS

New associated production measurements reveal interesting patterns

ESTER

MANCH

arXiv:1707.04350

New associated production measurements reveal interesting patterns

Finally seeing breakdown of basic picture of double parton interactions?

MANCHESTER

arXiv:1705.03374; JHEP

Simultaneous fit to d_0 significance / BDT output (*trained against instrumental backgrounds*) for signal third muon yields in high-lifetime J/ ψ selection

bb production: Pythia model comparison

The University of Manchester

MANCH

arXiv:1705.03374; JHEP

Differential rates compared to Pythia with different gluon splitting parameters Pythia8 does not reproduce shapes of the angular distributions very well p_T -based splitting kernels give a better description at low ΔR (options 1,4)

ESTER

MANCH

42

Herwig++ generally better description than Pythia8

MG5_aMC 4-flavour and 5-flavour sit on either side of the data

4-flavour closer in shape to the data

MANCH

Probing higher p_T:

ESTER

Differences between MF5 4-flavour and MG5 5-flavour emphasised

MG5 5-flavour moving further from data (and similar to Sherpa)

arXiv:1705.03374; JHEP

STER

MANCH

arXiv:1705.03374; JHEP

44

For Δ y MG5 and Sherpa both give a good description

Herwig++ and Pythia perform poorly as Δy increases

No single generator is able to well-describe all bb spectra studied (more in paper): best overall MG5_aMC 4-flavour

Associated production 9 heavy flavours Darren Price Sep 6th 201

Associated production measurements at ATLAS have a positive outlook: robust against trigger rate / pile-up constraints

Aside from tests of QCD production, and DPS, interesting "spin-offs" possible!

MAN

Associated production measurements at ATLAS have a positive outlook: robust against trigger rate / pile-up constraints

Aside from tests of QCD production, and DPS, interesting "spin-offs" possible!

Associated light scalar Higgs boson mixing with SM Higgs (W+J/ ψ):

MAN

- Associated production measurements at ATLAS have a positive outlook: robust against trigger rate / pile-up constraints
- Aside from tests of QCD production, and DPS, interesting "spin-offs" possible!
- Rare Higgs decays: direct probe of quark Yukawa couplings (Z+J/ ψ):

e.g. arXiv:1407.0695, arXiv:1406.7102

MAN

- Associated production measurements at ATLAS have a positive outlook: robust against trigger rate / pile-up constraints
- Aside from tests of QCD production, and DPS, interesting "spin-offs" possible!

New light states with rare quarkonia decays (Z+J/ ψ , di-J/ ψ):

Yad. Fiz. 46 (1987) 864-868. [Sov. J. Nucl. Phys.46,493(1987)].

MAN

- Associated production measurements at ATLAS have a positive outlook: robust against trigger rate / pile-up constraints
- Aside from tests of QCD production, and DPS, interesting "spin-offs" possible!

Predict rich spectroscopy of exotic doubly-hidden charm/beauty tetraquarks

50

The University of Manchester

Associated production of heavy flavour a (relatively) rare process that ATLAS is well-suited to explore:

- New tests of QCD HF calculations
- Novel probes of aspects proton structure
- Complementary tests of W/Z+b-quark production
- Future sensitivity to rare decays of Higgs, new light scalars, quark Yukawa couplings, exotic tetraquarks...

Backup

1824

MANCHESTER

MANCHESTER 1824

Pile-up

