Exotic Hadrons on the Lattice

Gavin Cheung
Hadron Spectrum Collaboration

DAMTP, University of Cambridge

6 September 2017
Quark Model and the $c\bar{c}$ Spectrum

No $0^{--}, 0^{+-}, 1^{--}, 2^{+-}, \ldots$

The Situation Today for $c\bar{c}$

Too many states seen compared to what quark models predict.

S. Olsen, arxiv:1511.01589
Exotic Mesons

- Glueball
- Hybrid
- Tetraquark
- Molecule
Exotic Mesons

Can these explain the exotic states?

(a) Glueball
(b) Hybrid
(c) Tetraquark
(d) Molecule
Lattice QCD

- Lattice QCD is an attractive framework for performing first principle calculations to understand exotic mesons.

\[\langle O(t) O^\dagger(0) \rangle = \langle 0 | O(t) O^\dagger(0) | 0 \rangle = \sum_n |\langle 0 | O | n \rangle|^2 e^{-M_n t}. \]

- The spectrum is contained in the two-point correlation function and can be extracted. What about \(O \)?
Lattice QCD

- Lattice QCD is an attractive framework for performing first principle calculations to understand exotic mesons.
- Compute two-point correlation functions $\langle O(t) O^\dagger(0) \rangle$ on the lattice for lots of operators.

\[\langle O(t) O^\dagger(0) \rangle = \langle 0 | O(t) O^\dagger(0) | 0 \rangle = \sum_n |\langle 0 | O | n \rangle|^2 e^{-M_n t}. \]
Lattice QCD

- Lattice QCD is an attractive framework for performing first principle calculations to understand exotic mesons.
- Compute two-point correlation functions $\langle O(t)O^\dagger(0) \rangle$ on the lattice for lots of operators.

\[
\langle O(t)O^\dagger(0) \rangle = \langle 0|O(t)O^\dagger(0)|0 \rangle = \sum_n |\langle 0|O|n \rangle|^2 e^{-M_n t}.
\]

The spectrum is contained in the two-point correlation function and can be extracted. What about O?
Lattice QCD

- Lattice QCD is an attractive framework for performing first principle calculations to understand exotic mesons.
- Compute two-point correlation functions $\langle O(t)O^\dagger(0) \rangle$ on the lattice for lots of operators.

$$
\langle O(t)O^\dagger(0) \rangle = \langle 0| O(t)O^\dagger(0)|0 \rangle = \sum_n |\langle 0|O|n \rangle|^2 e^{-M_n t}.
$$

- The spectrum is contained in the two-point correlation function and can be extracted. What about O?
Meson Operators

- We want to build good operators with the correct quantum numbers of the states we’re interested in. Starting with fermion bilinears,

\[\mathcal{O}(t) \sim \bar{c} \Gamma c. \]
Meson Operators

- We want to build good operators with the correct quantum numbers of the states we’re interested in. Starting with fermion bilinears,

 \[\mathcal{O}(t) \sim \bar{c} \Gamma c. \]

- \(\Gamma \) can only probe up to \(J = 1 \). But we can do better! Add in some gauge-covariant derivatives to access any \(J^{PC} \).

 \[\mathcal{O}(t) \sim \bar{c} \Gamma \overset{\leftarrow}{D} \ldots \vec{D} c. \]
Meson Operators

- We want to build good operators with the correct quantum numbers of the states we’re interested in. Starting with fermion bilinears,

\[\mathcal{O}(t) \sim \bar{c} \Gamma c. \]

- \(\Gamma \) can only probe up to \(J = 1 \). But we can do better! Add in some gauge-covariant derivatives to access any \(J^{PC} \).

\[\mathcal{O}(t) \sim \bar{c} \Gamma \leftarrow \rightarrow D \ldots \leftarrow \rightarrow D c. \]

- This construction also gives ‘gluey’ operators \(\mathcal{O}(t) \propto F_{\mu\nu} \) that resemble a hybrid meson structure.
Results
$c\bar{c}$ Spectrum at $m_\pi \sim 240$ MeV

GC et al., arXiv:1610.01073
$c\bar{c}$ Spectrum at $m_\pi \sim 240$ MeV

S-wave

GC et al., arXiv:1610.01073
$c\bar{c}$ Spectrum at $m_\pi \sim 240$ MeV

S-wave

P-Wave

GC et al., arXiv:1610.01073
$c\bar{c}$ Spectrum at $m_\pi \sim 240$ MeV

- **S-wave**
- **P-Wave**
- **D-Wave**
- **F-Wave**
- **G-Wave**

GC et al., arXiv:1610.01073
$c\bar{c}$ Spectrum at $m_\pi \sim 240$ MeV
Hybrid Mesons

Consistent with adding an effective gluonic degree of freedom $J^{PC} = 1^{+-}$ to quark model.

$q\bar{q} \ L = 0$

\[
\{0^{-+}; 1^{--}\} \rightarrow \{1^{--}; 0^{-+}, 1^{-+}, 2^{-+}\}
\]
Hybrid Mesons

Consistent with adding an effective gluonic degree of freedom $J^{PC} = 1^{+-}$ to quark model.

$q\bar{q} \ L = 0$

$$\{0^{-+}; 1^{--}\} \rightarrow \{1^{--}; 0^{-+}, 1^{-+}, 2^{-+}\}$$

$q\bar{q} \ L = 1$

$$\{1^{+-}; 0^{++}, 1^{++}, 2^{++}\} \rightarrow \{0^{++}, 1^{++}, 2^{++}; 0^{+-}, 1^{--}(3), 2^{+-}(2), 3^{+-}\}$$
Hybrid Mesons

Consistent with adding an effective gluonic degree of freedom $J^{PC} = 1^{-+}$ to quark model.

$q\bar{q} \ L = 0$

\[
\{0^{-+}; 1^{--}\} \rightarrow \{1^{--}; 0^{-+}, 1^{--}, 2^{++}\}
\]

$q\bar{q} \ L = 1$

\[
\{1^{+-}; 0^{++}, 1^{++}, 2^{++}\} \rightarrow \{0^{++}, 1^{++}, 2^{++}; 0^{+-}, 1^{+-}(3), 2^{+-}(2), 3^{+-}\}
\]

These states are only seen when we include gluey operators in the calculation.
$m_\pi \sim 240$ MeV vs $m_\pi \sim 400$ MeV

$m_\pi \sim 400$ MeV from Liu et al., arXiv:1204.5425
Bigger Operators

- No multi-meson states seen in the previous spectrum. Need different operators?
- Meson-meson operators (M)

\[\mathcal{O}(t) \sim (\bar{c} \Gamma q')(\bar{q}' \Gamma c). \]

- Tetraquark operators (T)

\[\mathcal{O}(t) \sim G_{ad} \left(g_{abc} c_b \left(C \Gamma_1 \right) q_c^T \right) \left(g_{def} \bar{c}_e^T \left(\Gamma_2 C \right) \bar{q}_f \right). \]

[Diquark] [Anti-diquark]
Isospin-1 hidden charm spectrum \((c\bar{c}q\bar{q})\) for \(m_\pi \sim 400\) MeV

Isospin-1 hidden charm spectrum \((c\bar{c}q\bar{q})\) for \(m_\pi \sim 400\) MeV

- Tetraquark operators do not seem to have a significant effect on the finite volume spectrum.
- Finite volume spectrum lie close to non-interacting meson-meson levels suggesting there are weak meson-meson interactions.
- Therefore, there is no strong indication for a bound state or narrow resonance in these channels. \(Z_C(3900)\)?
Isospin-0 doubly charmed spectrum ($cc\bar{q}\bar{q}$)
Conclusions and outlook

▶ Quark model does not fully describe all the experimentally observed mesons and lattice QCD provides an attractive way to study exotic mesons.

▶ In lattice QCD, we find states with exotic J^{PC} quantum numbers and identify states that are consistent with a quark-antiquark combination coupled to a 1^{+-} gluonic excitation.

▶ Turning to four-quark states, we do not find significant changes to spectrum when including a class of operators resembling tetraquarks in our calculations. The extracted spectrum does not show any clear signs of bound states or narrow resonances.

▶ Next steps are to relate the discrete finite volume spectrum to scattering phenomena using the Lüscher formalism. This would require more spectra in moving frames and different volumes. [David Wilson, Lattice results for spectroscopy, 8:45am]