Theory status and latest developments in NP searches with **semileptonic** *b* **decays**

Luiz Vale Silva

University of Sussex

Sep 5th, 2017

Jožef Stefan Inst. (till last Thursday)

CKM fitter

(from last Friday on)

UK Flavour 2017, Durham

Luiz Vale Silva (University of Sussex)

Th. status and NP in semilept. b decays

Sep 5th, 2017 1 / 31

I= nan

Outline

- 2 Theoretical status of $V_{(u,c)b}$
- (3) Theoretical status of au/ℓ ratios

三日 のへの

Outline

2) Theoretical status of $V_{(u,c)b}$

3) Theoretical status of au/ℓ ratios

Cross-road

Why (semi)leptonic *b* decays:

• Laboratory: creating and improving tools for QCD

ELE NOR

Cross-road

Why (semi)leptonic b decays:

- Laboratory: creating and improving tools for QCD
- Extracting fundamental parameters: CKM matrix

ELE NOR

Cross-road

Why (semi)leptonic b decays:

- Laboratory: creating and improving tools for QCD
- Extracting fundamental parameters: CKM matrix
- Going Beyond the Standard Model: indications of LFUV

EL OQO

Important progresses in the *theoretical* front Notably Lattice QCD

[Talk by Chris Bouchard]

Important progresses in the experimental front

BaBar, Belle, LHCb

[Talk by Mika Vesterinen]

Here, a review:

Brief overview of $V_{(u,c)b}$ and $R_{D^{(*)}}$ Developments in **NP searches**

5 1 SQA

Outline

3) Theoretical status of au/ℓ ratios

Luiz Vale Silva (University of Sussex) Th. status and NP in semilept. b decays

JIN NOR

Overview

• Extractions of $V_{(u,c)b}$ have a great level of precision, of few %

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖■ 釣ぬゆ

Overview

- Extractions of $V_{(u,c)b}$ have a great level of precision, of few %
- $\bullet \sim$ theo. frameworks for charmed and charmless modes, but different tools for inclusive and exclusive

ELE NOR

Overview

- Extractions of $V_{(u,c)b}$ have a great level of precision, of few %
- $\bullet \sim$ theo. frameworks for charmed and charmless modes, but different tools for inclusive and exclusive

Exclusive

HQS (∞ mass limit) underlying HQET e.g., in the HQ limit, $\mathcal{F}^{B \to D^*}(w) = \mathcal{G}^{B \to D}(w) = \xi_{IW}(w)$

Inclusive

HQE leads to a systematic OPE in powers of $1/m_{b}$

000 ELE 4EX 4EX 000

Exclusive V_{cb} extraction: $B \rightarrow D^* \ell \nu$

$$rac{d\Gamma}{dw} \propto \eta^2_{EW} \mathcal{F}(w)^2 |V_{cb}|^2, \quad w = v_B \cdot v_{D^*},$$

where $1 \leq w \leq (m_B^2 + m_{D^*}^2)/(2m_B m_{D^*})$

- In the limit $m_{b,c} \to \infty$, single FF (axial-vector) $\mathcal{O}(\Lambda^n_{QCD}/m^n_{b,c})$ corrections: for the normalization @ w = 1and the shape of the FF as a function of w
- Lattice QCD, ${\cal F}(1) = 0.906 \pm 0.013$

[Fermilab/MILC'14]

$$|V_{cb}| = (39.05 \pm 0.47_{
m exp} \pm 0.58_{
m lattice, EW}) imes 10^{-3}$$
 (CLN)

[HFAG'16]

AB
AB<

Exclusive V_{cb} extraction: $B \rightarrow D^* \ell \nu$

- Parameterizations of the FFs as a function of the recoil CLN model dependent/BGL model independent
- Important tensions among CLN/BGL for latest Belle
 BGL in agreement w/ |V_{cb}|_{incl.}, but large tensions w/ HQS

[Belle'17,Bigi+'17,Grinstein+'17,Bernlochner+'17]

Exclusive V_{cb} extraction: $B \rightarrow D\ell \nu$

 $rac{d\Gamma}{dw} \propto \eta^2_{EW} \mathcal{G}(w)^2 |V_{cb}|^2$, w/ \mathcal{G} function of f_+ and f_0

$$|V_{cb}| = (40.49 \pm 0.97) \times 10^{-3}$$

(BGL & Bigi, Gambino)
[HPQCD'15,Fermilab/MILC'15,Bigi+'16]
Competitive precision w/ $B \rightarrow D^*$
CLN/BGL are consistent

Luiz Vale Silva (University of Sussex) Th. status and NP in semilept. b decays

Inclusive V_{cb} extraction

$$\Gamma \propto |V_{cb}|^2 \left[\sum_i \mathbf{C}_0^{(\mathbf{i})} \frac{\alpha_s^i}{\pi} + \frac{\mathcal{O}(\mu^2)}{m_b^2} \sum_i \mathbf{C}_2^{(\mathbf{i})} \frac{\alpha_s^i}{\pi} + \frac{\mathcal{O}(\rho^3)}{m_b^3} \sum_i \mathbf{C}_3^{(\mathbf{i})} \frac{\alpha_s^i}{\pi} + \dots \right]$$

• Terms $\mathcal{O}(\alpha_s \mu^2/m_b^2)$ for the dimension 5 chromomagnetic op., $\mu_G^2 \equiv \langle B | \bar{b}(iD_{\perp}^{\mu})(iD_{\perp}^{\nu})\sigma_{\mu\nu}b | B \rangle$ $(D_{\perp}^{\mu} = (g_{\mu\nu} - v_{\mu}v_{\nu})D^{\mu})$

[Alberti+'14,Mannel+'15]

• Estimate terms $O(1/m_b^{4,5})$ [Gambino+'16] Main uncertainties: higher-order perturbative $(\alpha_s^3, \alpha_s/m_b^3)$ and non-perturbative corrections

AB
AB<

Inclusive V_{cb} extraction

• Semileptonic moments $\langle E_e^n \rangle_{E_e > E_{max}}$, n = 0, 1, 2, ..., etc.

$$\langle E_e^n \rangle_{E_e > E_{cut}} = \int_{E_{cut}}^{E_{max}} \frac{d\Gamma}{dE_e} E_e^n dE_e / \int_{E_{cut}}^{E_{max}} \frac{d\Gamma}{dE_e} dE_e$$

- Fit including $(1, \alpha_s, \alpha_s^2)$, $(1, \alpha_s)/m_b^2$, $1/m_b^3$ terms
- $|V_{cb}| = (42.19 \pm 0.78_{
 m fit, theory}) imes 10^{-3} \ (m_b^{kin})$ [HFAG'16]

• Unc. dominated by theory unc. for the measured moments

Exclusive V_{ub} extraction

 $B\to \pi\ell\nu$

Lattice N₇=4 fit 20 BaBar untagged 6 bins (2011) Belle untagged 13 bins (2011) Simultaneous fit to Lattice and BaBar untagged 12 bins (2012) HOH JB/dq² x 10⁶ [GeV⁻²] 15 Belle tagged B⁰ 13 bins (2013) differential rates data: Belle tagged B⁻ 7 bins (2013) Lat.+all expt. combined N₂=4 fit 10 $|V_{ub}| = (3.72 \pm 0.16_{\mathrm{expt, lat.}}) \times 10^{-3}$ (BCL & FNAL/MILC) 5 0 5 10 15 20 25 0

[Fermilab/MILC'15]

 a^2

Luiz Vale Silva (University of Sussex) Th. status and NP in semilept. b decays

Inclusive V_{ub} extraction

Huge background from $B \to X_c \ell \bar{\nu}_\ell$: more complex handling of non-perturbative effects

Different theoretical methods lead to similar extractions

Luiz Vale Silva (University of Sussex) Th. status and NP in semilept. b decays

Sep 5th, 2017 14 / 31

Semileptonic *b*-baryon decays: excl. $|V_{ub}|/|V_{cb}|$

 $\Lambda^0_b
ightarrow (p, \Lambda^+_c) \mu^- ar{
u}$

Λ⁰_b → (p, Λ⁺_c)μ⁻ν̄ peak at large recoil: Lattice specially suitable
 Lattice FFs for baryon decays [Detmold+'15,Meinel'16; tensor: Datta+'17] Six in total for each channel (3 vector, 3 axial-vector)

ELE NOR

Semi-leptonic *B*-baryon decays: excl. $|V_{ub}|/|V_{cb}|$

- LHCb: measurement of $\frac{\mathcal{B}(\Lambda_b^0 \to p\mu\bar{\nu})_{q^2>15 \text{ GeV}^2}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu\bar{\nu})_{q^2>7 \text{ GeV}^2}}$ First determination of $|V_{ub}|/|V_{cb}|$ at a hadron collider
 - $|V_{ub}|/|V_{cb}| = 0.083 \pm 0.004_{expt} \pm 0.004_{lattice}$ (Detmold et al.)
- Similar unc. compared to inclusive and exclusive determinations PDG15: $\frac{|V_{ub}|}{|V_{cb}|} = 0.107 \pm 0.006$ (incl.), $\frac{|V_{ub}|}{|V_{cb}|} = 0.095 \pm 0.005$ (excl.)

• 1σ bands (no distinction of statistical and theoretical uncs.)

• Exclusive $|V_{ub}|$, inclusive $|V_{cb}|$, and $|V_{ub}|/|V_{cb}|$ from *B*-baryon decays favored by **indirect** predictions

Luiz Vale Silva (University of Sussex)

Th. status and NP in semilept. b decays

Sep 5th, 2017 17 / 31

Outline

Theoretical status of $V_{(u,c)b}$

Theoretical status of τ/ℓ ratios

Tau rates

 $B \to D^{(*)} \ell \nu$

$$rac{d\Gamma_\ell}{dq^2} \propto \left(1 - rac{m_\ell^2}{q^2}
ight)^2 \left[\left(|H_+|^2 + |H_-|^2 + |H_0|^2
ight) \left(1 + rac{m_\ell^2}{2q^2}
ight) + rac{3m_\ell^2}{2q^2} |H_t|^2
ight]$$

- τ contributions: Sensitive to H_t
- Ratios of Γ_ℓ: Tension with SM
 → LFUV

Luiz Vale Silva (University of Sussex) Th. status and NP in semilept. b decays

ELE NOR

< 注 → < 注 →

Combined fit R_D and R_{D^*}

• HQET to $\mathcal{O}(\Lambda_{
m QCD}/m_{c,b},lpha_{s})$

[Bernlochner+'1703,'1708]

- Global fit: $|V_{cb}|$, $\mathcal{G}(1)$, $\mathcal{F}(1)$, slope of ξ_{IW} , sub-leading IW funcs.
- No inconsistencies between data, LQCD results and QCDSR

Most precise prediction ($L_{w\geq 1} + SR = expt.$ data and all LQCD and QCDSR): $R_D = 0.299(3)$ and $R_{D^*} = 0.257(3)$, corr = 44% ($|V_{cb}| = (39.3 \pm 1.0) \times 10^{-3}$)

EL OQO

Prospects on other ratios

$$R(D_s) = rac{\mathcal{B}(B_s o D_s au
u)}{\mathcal{B}(B_s o D_s \ell
u)} = 0.314 \pm 0.006_{ ext{lattice}}$$

[Monahan+'16,'17]

w/ subleading IW functions estimated

[Bernlochner+'16,Monahan+'16,'17]

Also,
$$R(\Lambda_c) = 0.33 \pm 0.01$$

[Detmold+'1503.01421,Datta+'17]

 $\begin{array}{c} 1.0 \\$

 $B_s \rightarrow D_s \mu i$

Sep 5th, 2017 21 / 31

ELE DOG

Luiz Vale Silva (University of Sussex) Th. statu

Th. status and NP in semilept. b decays

Outline

Theoretical status of $V_{(u,c)b}$

$b ightarrow c au ar{ u}_{ au}$ at low energies

Charged currents:

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= -\frac{4G_F V_{cb}}{\sqrt{2}} \Big[\left(1 + \epsilon_{\mathsf{L}} \right) \bar{\tau} \gamma_{\mu} P_L \nu_{\tau} \cdot \bar{c} \gamma^{\mu} P_L b + \epsilon_R \bar{\tau} \gamma_{\mu} P_L \nu_{\tau} \cdot \bar{c} \gamma^{\mu} P_R b \\ &+ \epsilon_T \bar{\tau} \sigma_{\mu\nu} P_L \nu_{\tau} \cdot \bar{c} \sigma^{\mu\nu} P_L b + \epsilon_{\mathsf{S}_{\mathsf{L}}} \bar{\tau} P_L \nu_{\tau} \cdot \bar{c} P_L b + \epsilon_{\mathsf{S}_{\mathsf{R}}} \bar{\tau} P_L \nu_{\tau} \cdot \bar{c} P_R b \Big] + \text{h.c.} \end{aligned}$$

Different phenomenological aspects for the NP ϵ_L , ϵ_R , ϵ_{S_l} , ϵ_{S_R} , ϵ_T

B_c lifetime

Valuable info. for constraining chiral-enhanced pseudo-scalar NP

$$au^{\mathrm{OPE}}_{B_c} \stackrel{SM}{=} 0.52 \substack{+0.18\\-0.12}{} \mathrm{ps} \Rightarrow$$

[Bigi'95,Beneke+'96,C.-H. Chang+'00]

$$\mathcal{B}(B_c^- o au
u) \lesssim 30\%$$

Suppressed coupling $\epsilon_{S_l} - \epsilon_{S_R}$

[Alonso+'16; see also, Akeroyd+'17]

ELE DOG

au-lepton polarization in $ar{B}^0 ightarrow D^* au^- ar{ u}_ au$

• First meas. of the τ longitudinal polarization in $\bar{B}^0 \to D^* \tau^- \bar{\nu}$ through $\tau^- \to \pi^- \nu_{\tau}, \ \tau^- \to \rho^- \nu_{\tau}$ [Belle'16,'17]

- The distribution of $\cos(\theta_{\tau d})$ gives the polarization
- $\bullet~{\rm SD}$ information carried out by the polarizations of the $\tau{\rm -lepton}$

[lyanov+'17]

Constraints on NP: longitudinal polarization

$$\delta^{ au}_{cb} \propto (\epsilon_{\mathcal{S}_L} + \epsilon_{\mathcal{S}_R}) \quad \text{ and } \quad \Delta^{ au}_{cb} \propto (\epsilon_{\mathcal{S}_L} - \epsilon_{\mathcal{S}_R})$$

Dark red/blue rings: $R(D^{(*)})$; *light* red/blue disks: q^2 -distribution of $B \to D^{(*)}\tau\nu$; green disk: $\mathcal{B}(B_c \to \tau\nu)$; dotted area: includes $\frac{\mathcal{B}(B \to \tau\nu)}{\mathcal{B}(B \to \pi\ell\nu)}$; dashed circle: $P_L(D^*)$ [Celis+'16]

Th. status and NP in semilept. b decays

Sep 5th, 2017

26 / 31

Luiz Vale Silva (University of Sussex)

au-lepton polarization in B
ightarrow D au
u

Final-state τ → dν_τ(ν
_ℓ), d = {π, ρ, ℓ}: self-analyzer [Alonso+'17] Γ_d(τ → d) ⇒ P_L, and A_d(q²) = F^d_AA_τ(q²) + F^d_⊥P_⊥(q²) A_τ: FB asym.; P_⊥: perpendicular pol. (e.g. in the plane πν_τ)
Belle II (full operation): τ → πν_τ, uncertainties ≤ O(10 %)

 $s_d = E_d/\sqrt{q^2}$ (in the $auar
u_ au$ rest-frame)

Luiz Vale Silva (University of Sussex)

Th. status and NP in semilept. b decays

Sep 5th, 2017 27 / 31

Angular observables

Some benefits:

Distinguishing NP scenarios, e.g., FB asym. τ

[Bečirević+'16]

$$g_V = \epsilon_L + \epsilon_R$$
 , $g_A = \epsilon_R - \epsilon_L$

Luiz Vale Silva (University of Sussex) Th. status and NP in semilept. b decays Sep 5t

EL OQO

Correlations w/ rare decays

Anomalies in *B* decays intermediated by neutral currents, $R_{K^{(*)}}$ **At energies** $\gg v_{EW}$:

 $\mathcal{L}_{\textit{NP}}^{0} = \frac{1}{\Lambda^{2}} \left(C_{1} \, \bar{q}_{3L}^{\prime} \gamma^{\mu} q_{3L}^{\prime} \cdot \bar{\ell}_{3L}^{\prime} \gamma_{\mu} \ell_{3L}^{\prime} + C_{3} \, \bar{q}_{3L}^{\prime} \gamma^{\mu} \tau^{a} q_{3L}^{\prime} \cdot \bar{\ell}_{3L}^{\prime} \gamma_{\mu} \tau^{a} \ell_{3L}^{\prime} \right)$

EW corrections: LNV four-lepton ops., corrections to Z coupling, etc.

[Glashow+'14,Feruglio+'16,'17]

AB
AB<

Concluding remarks

- Reason for the excl. vs. incl. tensions?
- **Physics underlying** $R(D^{(*)})$: SM? NP? stat., syst. effects?
- Common origin for all *B* anomalies, $R(D^{(*)})$ and $R(K^{(*)})$?

 \rightarrow Perhaps more questions than answers, but important progresses are continuously made!

Obviously, very exciting times are foreseen w/ improved LQCD (e.g. $B \rightarrow D^*$ beyond zero-recoil, etc.), further Belle/LHC analyses and Belle II (e.g. new tau observables, etc.)

Thanks

(and apologies for possibly missing references!)

ELE DOO

Angular observables

• Benefits: interference between $D^* \rightarrow D\pi$ and $D_0^* \rightarrow D\pi$ Predictions rely on (naive) Breit-Wigner assumption for D_0^*

$$(I_{Re}(q^2), I_{Im}(q^2)) = rac{1}{d\Gamma/dq^2} \int_{(m_{D^*} - \delta)^2}^{(m_{D^*} + \delta)^2} (b^c_{\chi}, b^s_{\chi}) dm^2_{D\pi} \, , \ w/ \; (b^c_{\chi}, b^s_{\chi}) \; ext{function of } BW_{D^*} imes BW_{D^*_0}$$

• $(I_{Re}(q^2), I_{Im}(q^2))$ small for different δ , and $\epsilon_L, \epsilon_R, \epsilon_{S_L}, \epsilon_{S_R}, \epsilon_T \approx 1$

Appendix

Quantity	g_V	g_A	g_S	g_P	g_T
A_{FB}^D	×	-	***	-	*
$A^D_{\lambda_\tau}$	×	-	***	-	**
$A_{FB}^{D^*}$	*	***	-	***	*
$A^{D^*}_{\lambda_{\tau}}$	×	×	-	**	*
$R_{L,T}$	×	×	-	**	**
A_5	**	**	-	*	***
C_{χ}	*	×	-	**	**
S_{χ}	***	***	-	×	***
A_8	**	**	-	**	***
A_9	*	*	-	**	**
A_{10}	**	**	-	×	**
A ₁₁	×	×	-	**	**

Table 1: Sensitivity to $g_i \neq 0$: × stands for "not sensitive", and * * * for "maximally sensitive".

Appendix

	BELLE I [total]	BELLE II [1 year]	BELLE II [total]
$\mathcal{L} [ab^{-1}]/N [events]$	1/60	5/300	50/3000
$\delta P_L/P_L$	$\{0.21, 0.49, 0.62\}$	$\{0.10, 0.22, 0.28\}$	$\{0.03, 0.07, 0.09\}$
$\delta P_{\perp}/ P_{\perp} $	$\{0.62, 1.8, 4.0\}$	$\{0.28, 0.81, 1.8\}$	$\{0.09, 0.25, 0.57\}$
$\delta A_{\tau}/ A_{\tau} $	$\{0.74, 0.69, 2.8\}$	$\{0.33, 0.31, 1.3\}$	$\{0.11, 0.10, 0.40\}$

TABLE I: Relative statistical uncertainties on the τ polarizations, P_L and P_{\perp} , and angular asymmetry, A_{τ} , in $B^- \rightarrow D^0 \tau^- \bar{\nu}_{\tau}$ for different τ decays { $\tau \rightarrow \pi \nu, \tau \rightarrow \rho \nu, \tau \rightarrow \ell \nu \bar{\nu}$ }. Predictions are given for the full data set from BELLE I and projections for BELLE II.

[1702.02773]