Exotic Hadrons: models applied to LHCb pentaquarks

Tim Burns

Swansea University

6 September 2017

[T.B., Eur.Phys.J. A51, 152 (2015), 1509.02460] [T.B. & E.Swanson (ongoing)]

Hybrids

Compact multiquarks

Hybrids

Compact multiquarks

$P_c(4380)$ and $P_c(4450)$

$P_c(4380)$ and $P_c(4450)$

LHCb amplitude analysis of the three-body decay $\Lambda_b \rightarrow J/\psi p K^-$. [LHCb,PRL115,072001,2015]

Two $J/\psi p$ states, the flavour of the proton with hidden charm $(uudc\bar{c})$.

$P_{c}(4380)$ and $P_{c}(4450)$

	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass Width	$\begin{array}{c} 4380 \pm 8 {\pm} 29 \\ 205 \pm 18 \pm 86 \end{array}$	$\begin{array}{c} 4449.8 \pm 1.7 \pm 2.5 \\ 35 \pm 5 \pm 19 \end{array}$
Assignment 1 Assignment 2 Assignment 3	3/2 ⁻ 3/2 ⁺ 5/2 ⁺	5/2 ⁺ 5/2 ⁻ 3/2 ⁻

The $uudc\bar{c}$ combination in S-wave gives:

$I(J^P)$	$ 1\rangle$	2〉	3>	4>	5 \	6⟩	$ 7\rangle$	8>	9〉	10⟩
$\frac{1}{2}\left(\frac{1}{2}^{-}\right)$	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark		
$\frac{1}{2}\left(\frac{3}{2}^{-}\right)$		\checkmark				\checkmark	\checkmark	\checkmark		
$\frac{1}{2}\left(\frac{5}{2}^{-}\right)$								\checkmark		
$\frac{3}{2}\left(\frac{1}{2}^{-}\right)$				\checkmark					\checkmark	\checkmark
$\frac{3}{2}\left(\frac{3}{2}^{-}\right)$			\checkmark	\checkmark						\checkmark
$\frac{3}{2}\left(\frac{5}{2}^{-}\right)$				\checkmark						

	$P_{c}(4380)^{+}$	<i>P</i> _c (4450) ⁺
Mass Width	$\begin{array}{c} 4380 \pm 8 {\pm} 29 \\ 205 \pm 18 \pm 86 \end{array}$	$\begin{array}{c} 4449.8 \pm 1.7 \pm 2.5 \\ 35 \pm 5 \pm 19 \end{array}$
Assignment 1 Assignment 2 Assignment 3	3/2 ⁻ 3/2 ⁺ 5/2 ⁺	5/2 ⁺ 5/2 ⁻ 3/2 ⁻

		$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass Width		$\begin{array}{c} 4380 \pm 8 {\pm} 29 \\ 205 \pm 18 \pm 86 \end{array}$	$\begin{array}{c} 4449.8 \pm 1.7 \pm 2.5 \\ 35 \pm 5 \pm 19 \end{array}$
Assignment 1 Assignment 2 Assignment 3		3/2 ⁻ 3/2 ⁺ 5/2 ⁺	5/2 ⁺ 5/2 ⁻ 3/2 ⁻
$ \begin{array}{c} \Sigma_c^{*+}\bar{D}^0 \\ \Sigma_c^+\bar{D}^{*0} \\ \Lambda_c^+(1P)\bar{D}^0 \\ \chi_{c1}P \end{array} $	$(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udu)(c\bar{c})$	4382.3 ± 2.4	4459.9 ± 0.5 4457.09 ± 0.35 4448.93 ± 0.07

 K^{-}

Enhancements expected at $\Lambda_c \bar{D} = 1/2^ \Lambda_c \bar{D}^* = 1/2^-$, $3/2^$ not seen at LHCb

Consider the deuteron, a $O(1^{-})$ state 2.2 MeV below *pn* threshold.

VS.

		$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass Width		$\begin{array}{c} 4380 \pm 8 {\pm} 29 \\ 205 \pm 18 \pm 86 \end{array}$	$\begin{array}{c} 4449.8 \pm 1.7 \pm 2.5 \\ 35 \pm 5 \pm 19 \end{array}$
Assignment 1 Assignment 2 Assignment 3		$3/2^-$ $3/2^+$ $5/2^+$	5/2 ⁺ 5/2 ⁻ 3/2 ⁻
$\frac{\sum_{c}^{*+} \bar{D}^{0}}{\sum_{c}^{+} \bar{D}^{*0}}{\Lambda_{c}^{+} (1P) \bar{D}^{0}}$	$(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udu)(c\bar{c})$	4382.3 ± 2.4	$4459.9 \pm 0.5 \\ 4457.09 \pm 0.35 \\ 4448.93 \pm 0.07$

		$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass Width		$\begin{array}{c} 4380 \pm 8 {\pm} 29 \\ 205 \pm 18 \pm 86 \end{array}$	$\begin{array}{c} 4449.8 \pm 1.7 \pm 2.5 \\ 35 \pm 5 \pm 19 \end{array}$
Assignment 1 Assignment 2 Assignment 3		$3/2^-$ $3/2^+$ $5/2^+$	5/2 ⁺ 5/2 ⁻ 3/2 ⁻
$ \begin{array}{c} \overline{\Sigma_c^{*+}\bar{D}^0} \\ \Sigma_c^{+}\bar{D}^{*0} \\ \Lambda_c^{+}(1P)\bar{D}^0 \\ \chi_{c1}P \end{array} $	$(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udu)(c\bar{c})$	4382.3 ± 2.4	$\begin{array}{c} 4459.9 \pm 0.5 \\ 4457.09 \pm 0.35 \\ 4448.93 \pm 0.07 \end{array}$

		$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass Width		$\begin{array}{c} 4380 \pm 8 {\pm} 29 \\ 205 \pm 18 \pm 86 \end{array}$	$\begin{array}{c} 4449.8 \pm 1.7 \pm 2.5 \\ 35 \pm 5 \pm 19 \end{array}$
Assignment 1 Assignment 2 Assignment 3		<mark>3/2</mark> 3/2 ⁺ 5/2 ⁺	5/2 ⁺ 5/2 ⁻ 3/2 ⁻
$ \begin{array}{c} \overline{\Sigma_c^{*+}\bar{D}^0} \\ \Sigma_c^{+}\bar{D}^{*0} \\ \Lambda_c^{+}(1P)\bar{D}^0 \\ \chi_{c1}P \end{array} $	(udc)(uc̄) (udc)(uc̄) (udc)(uc̄) (udu)(cc̄)	4382.3 ± 2.4	4459.9 ± 0.5 4457.09 ± 0.35 4448.93 ± 0.07

The $(udc)(u\bar{c})$ combinations in S-wave are:

$I(J^P)$	$\Lambda_c \bar{D}$	$\Lambda_c \bar{D}^*$	Σ _c D	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D}^*$	$\Sigma_c^* \bar{D}^*$
$\frac{1}{2}\left(\frac{1}{2}^{-}\right)$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
$\frac{1}{2}\left(\frac{3}{2}^{-}\right)$		\checkmark		\checkmark	\checkmark	\checkmark
$\frac{1}{2}\left(\frac{5}{2}^{-}\right)$						\checkmark
$\frac{3}{2}\left(\frac{1}{2}^{-}\right)$			\checkmark		\checkmark	\checkmark
$\boxed{\frac{3}{2}\left(\frac{3}{2}^{-}\right)}$				\checkmark	\checkmark	\checkmark
$\boxed{\frac{3}{2}\left(\frac{5}{2}^{-}\right)}$						\checkmark

Forbidden vertices:

$$V(\vec{r}) = \sum_{ij} \left[C(r) \vec{\sigma}_i \cdot \vec{\sigma}_j + T(r) S_{ij}(\hat{r}) \right] \vec{\tau}_i \cdot \vec{\tau}_j$$

$$V(\vec{r}) = \sum_{ij} \left[C(r) \vec{\sigma}_i \cdot \vec{\sigma}_j + T(r) S_{ij}(\hat{r}) \right] \vec{\tau}_i \cdot \vec{\tau}_j$$

All I = 3/2 potentials suppressed by -1/2.

All I = 3/2 potentials suppressed by -1/2.

Coefficient of C(r) is important.

$I(J^P)$	$\Lambda_c \bar{D}$	$\Lambda_c ar{D}^*$	$\Sigma_c \bar{D}$	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D}^*$	$\Sigma_c^* \bar{D}^*$
$\frac{1}{2}\left(\frac{1}{2}^{-}\right)$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
$\frac{1}{2}\left(\frac{3}{2}^{-}\right)$		\checkmark		\checkmark	\checkmark	\checkmark
$\frac{1}{2}\left(\frac{5}{2}^{-}\right)$						\checkmark
$\frac{3}{2}\left(\frac{1}{2}^{-}\right)$			\checkmark		\checkmark	\checkmark
$\boxed{\frac{3}{2}\left(\frac{3}{2}^{-}\right)}$				\checkmark	\checkmark	\checkmark
$\frac{3}{2}\left(\frac{5}{2}^{-}\right)$						\checkmark

$I(J^P)$	$\Lambda_c \bar{D}$	$\Lambda_c ar{D}^*$	$\Sigma_c \bar{D}$	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D}^*$	$\Sigma_c^* \bar{D}^*$
$\frac{1}{2}\left(\frac{1}{2}^{-}\right)$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
$\frac{1}{2}\left(\frac{3}{2}^{-}\right)$		\checkmark		\checkmark	\checkmark	\checkmark
$\frac{1}{2}\left(\frac{5}{2}^{-}\right)$						\checkmark
$\frac{3}{2}\left(\frac{1}{2}^{-}\right)$			\checkmark		\checkmark	\checkmark
$\boxed{\frac{3}{2}\left(\frac{3}{2}^{-}\right)}$				\checkmark	\checkmark	\checkmark
$\boxed{\frac{3}{2}\left(\frac{5}{2}^{-}\right)}$						\checkmark

$I(J^P)$	$\Lambda_c \bar{D}$	$\Lambda_c ar{D}^*$	$\Sigma_c \bar{D}$	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D}^*$	$\Sigma_c^* \bar{D}^*$
$\frac{1}{2}\left(\frac{1}{2}^{-}\right)$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
$\frac{1}{2}\left(\frac{3}{2}^{-}\right)$		\checkmark		\checkmark	\checkmark	\checkmark
$\frac{1}{2}\left(\frac{5}{2}^{-}\right)$						\checkmark
$\frac{3}{2}\left(\frac{1}{2}^{-}\right)$			\checkmark		\checkmark	\checkmark
$\frac{3}{2}\left(\frac{3}{2}^{-}\right)$				\checkmark	\checkmark	\checkmark
$\frac{3}{2}\left(\frac{5}{2}^{-}\right)$						\checkmark

$I(J^P)$	$\Lambda_c \bar{D}$	$\Lambda_c ar{D}^*$	$\Sigma_c \bar{D}$	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D}^*$	$\Sigma_c^* \bar{D}^*$
$\frac{1}{2}\left(\frac{1}{2}^{-}\right)$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
$\frac{1}{2}\left(\frac{3}{2}^{-}\right)$		\checkmark		\checkmark	<i>P</i> _c (4450)	?
$\frac{1}{2}\left(\frac{5}{2}^{-}\right)$						\checkmark
$\frac{3}{2}\left(\frac{1}{2}^{-}\right)$			\checkmark		\checkmark	\checkmark
$\frac{3}{2}\left(\frac{3}{2}^{-}\right)$				\checkmark	\checkmark	\checkmark
$\frac{3}{2}\left(\frac{5}{2}^{-}\right)$						\checkmark

Summary

			8
exotic-ness	high!	low	medium
d.o.f.	quarks	hadrons	hadrons
interactions	g exchange	rescattering	π exchange
colour	$(1\otimes 1)\oplus (8\otimes 8)$	$(1\otimes 1)$	$(1\otimes 1)$
size	compact		extended
masses	model dependent	at thresholds	at thresholds
J ^{PC}	all	restricted	restricted
flavours	all	restricted	restricted(<i>I</i> -mix)
channels	most	restricted	HQ restricted
falsifiability	low	medium	high

Backup slides

$\Xi_c^* \bar{D}^*$ molecules

The potential matrices (central + tensor) are directly related.

Predict loosely bound 0(5/2⁻) $\Xi_c^* \bar{D}^*$ state, observable in $\Lambda_b \to J/\psi \Lambda \eta$.

Isospin mixing: $P_c(4380)$ and $P_c(4450)$

$$uudc\bar{c} \text{ comes in two charge combinations} \begin{cases} (udc)(u\bar{c}) = \Sigma_c^+ \bar{D}^0 \\ (uuc)(d\bar{c}) = \Sigma_c^{++} D^- \end{cases}$$

Isospin-conserving interactions would produce $|I, I_3\rangle$ eigenstates,

$$\begin{pmatrix} |\frac{1}{2},\frac{1}{2}\rangle \\ |\frac{3}{2},\frac{1}{2}\rangle \end{pmatrix} = \begin{pmatrix} -\sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} \end{pmatrix} \begin{pmatrix} |\Sigma_c^+\bar{D}^0\rangle \\ |\Sigma_c^{++}D^-\rangle \end{pmatrix}$$

but only if the masses $\Sigma_c^+ = \Sigma_c^{++}$ and $ar{D}^0 = D^-.$

Otherwise, isospin is not a good quantum number.

Isospin mixing: $P_c(4380)$ and $P_c(4450)$

$$\Sigma_c^{*+} \bar{D}^0 = 4382.3 \pm 2.4 \qquad \Sigma_c^+ \bar{D}^{*0} = 4459.9 \pm 0.5$$

$$\Sigma_c^{*++} D^- = 4387.5 \pm 0.7 \qquad \Sigma_c^{++} D^{*-} = 4464.24 \pm 0.23$$
Isospin mixing: $P_c(4380)$ and $P_c(4450)$

$$P_{c}(4380) = 4380 \pm 8 \pm 29$$

$$\sum_{c}^{*+} \bar{D}^{0} = 4382.3 \pm 2.4$$

$$\sum_{c}^{*++} D^{-} = 4387.5 \pm 0.7$$

$$P_c(4450) = 4449 \pm 1.7 \pm 2.5$$

$$\sum_c^+ \bar{D}^{*0} = 4459.9 \pm 0.5$$

$$\sum_c^{++} D^{*-} = 4464.24 \pm 0.23$$

lsospin mixing: $P_c(4380)$ and $P_c(4450)$

$$\begin{split} P_c(4380) &= 4380 \pm 8 \pm 29 \qquad P_c(4450) = 4449 \pm 1.7 \pm 2.5 \\ \Sigma_c^{*+} \bar{D}^0 &= 4382.3 \pm 2.4 \qquad \Sigma_c^+ \bar{D}^{*0} = 4459.9 \pm 0.5 \\ \Sigma_c^{*++} D^- &= 4387.5 \pm 0.7 \qquad \Sigma_c^{++} D^{*-} = 4464.24 \pm 0.23 \end{split}$$

The P_c states have mixed isospin:

$$|P_c\rangle = \cos \phi |\frac{1}{2}, \frac{1}{2}\rangle + \sin \phi |\frac{3}{2}, \frac{1}{2}\rangle$$

Isospin mixing: $P_c(4380)$ and $P_c(4450)$

$$\begin{split} P_c(4380) &= 4380 \pm 8 \pm 29 \qquad P_c(4450) = 4449 \pm 1.7 \pm 2.5 \\ \Sigma_c^{*+} \bar{D}^0 &= 4382.3 \pm 2.4 \qquad \Sigma_c^+ \bar{D}^{*0} = 4459.9 \pm 0.5 \\ \Sigma_c^{*++} D^- &= 4387.5 \pm 0.7 \qquad \Sigma_c^{++} D^{*-} = 4464.24 \pm 0.23 \end{split}$$

The P_c states have mixed isospin:

$$|P_c\rangle = \cos \phi |\frac{1}{2}, \frac{1}{2}\rangle + \sin \phi |\frac{3}{2}, \frac{1}{2}\rangle$$

They should decay also into $J/\psi \Delta^+$ and $\eta_c \Delta^+$, with weights:

$$J/\psi p: J/\psi \Delta^{+}: \eta_{c} \Delta^{+} = 2\cos^{2} \phi: 5\sin^{2} \phi: 3\sin^{2} \phi \quad [P_{c}(4380)]$$
$$J/\psi p: J/\psi \Delta^{+}: \eta_{c} \Delta^{+} = \cos^{2} \phi: 10\sin^{2} \phi: 6\sin^{2} \phi \quad [P_{c}(4450)]$$

Isospin mixing: predicted 5/2⁻ states $\Sigma_c^* \bar{D}^* 1/2(5/2^-)$

$$\Sigma_c^{*+} \bar{D}^{*0} = 4524.4 \pm 2.4$$

 $\Sigma_c^{*++} D^{*-} = 4528.2 \pm 0.7$

 $\begin{array}{l} \mbox{Mixed isopsin:} \\ |P\rangle = \cos\varphi |\frac{1}{2},\frac{1}{2}\rangle + \sin\varphi |\frac{3}{2},\frac{1}{2}\rangle \end{array}$

Decays: $\rightarrow J/\psi p$: D-wave, spin flip Reason for absence at LHCb?

ightarrow J/ $\psi\Delta$: S-wave, spin cons. \Longrightarrow I = 3/2 decay enhanced. Isospin mixing: predicted $5/2^{-}$ states $\Sigma_{c}^{*}\bar{D}^{*} 1/2(5/2^{-})$ $\Xi_{c}^{*}\bar{D}^{*} 0(5/2^{-})$

$$\Sigma_c^{*+} \bar{D}^{*0} = 4524.4 \pm 2.4$$

 $\Sigma_c^{*++} D^{*-} = 4528.2 \pm 0.7$

$$\Xi_c^{*0} \bar{D}^{*0} = 4652.9 \pm 0.6$$
$$\Xi_c^{*+} D^{*-} = 4656.2 \pm 0.7$$

Mixed isopsin: $|P\rangle = \cos \phi |\frac{1}{2}, \frac{1}{2}\rangle + \sin \phi |\frac{3}{2}, \frac{1}{2}\rangle$

$$\begin{array}{l} \mbox{Mixed isopsin:} \\ |P\rangle = \cos\varphi |0,0\rangle + \sin\varphi |1,0\rangle \end{array}$$

Decays: $\rightarrow J/\psi p$: D-wave, spin flip Reason for absence at LHCb?

Decays: $\rightarrow J/\psi \Lambda$: D-wave, spin flip e.g. $\Lambda_b^0 \rightarrow J/\psi \Lambda \eta$, $J/\psi \Lambda \phi$

 $\rightarrow J/\psi\Delta$: S-wave, spin cons. $\rightarrow J/\psi\Sigma^*$: S-wave, spin cons. \implies I = 3/2 decay enhanced. \implies I = 1 decay enhanced.

Pion exchange: central potential

Pion exchange: central potential

Pion exchange: central potential

