

### Exotic hadrons at LHCb

**GreigCowan** (Edinburgh) UK Flavour meeting IPPP, 6th September 2017



## The birth of the quark model

Volume 8, number 3

1 February 1964 PHYSICS LETTERS A SCHEMATIC MODEL OF BARYONS AND MESONS \* M.GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

We then refer to the members  $u^{\frac{1}{3}}$ ,  $d^{-\frac{1}{3}}$ , and  $s^{-\frac{1}{3}}$  of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations  $(qqq), (qqqq\bar{q})$  etc., while mesons are made out of  $(q\bar{q})$ ,  $(qq\bar{q}\bar{q}\bar{q})$ , etc. It is assuming that the lowest

Quarks as the building blocks of mesons and baryons was first proposed in 1964 by Gell-Mann and Zweig

















 $n^{2S+1}l$ 



## Meet the family







## **b** hadrons for spectroscopy

Large production cross-section at the LHC. [PRL 118 (2017) 052002]

Charmonium, particularly with J/ $\psi$  or  $\psi(2S)$ , in the final state is experimentally useful for triggering (muons/electrons).

Both decay chains lead to the same particles in the final state.

Mass fit is sufficient to separate if state isolated and narrow, otherwise need amplitude analysis.





 $B^+ \to X(3872)K^+, X(3872) \to J/\psi \pi^+ \pi^ B^0 \to Z(4430)^- K^+, Z(4430)^- \to \psi(2S)\pi^-$ 

### [PRL 110 (2013) 222001]







### Exotic mesons

# The X(3872) revolution

Observation in 2003 by Belle has led to a revolution in exotic hadron spectroscopy [PRL 91 (2003) 262001 with >1100 citations!]

Many phenomenological models:  $[C\overline{u}][\overline{C}u]$  tetraquark,  $D^0D^{*0} = (c\overline{u})(\overline{c}u)$  molecule,  $c\overline{c}g$  hybrid, hadrocharmonium...

### ++ from LHCb [PRD 92 (2015) 011102]

Observation

| $B \rightarrow KX(3872)$                                                                                          | $\rightarrow J/\psi \rho^0, J/\psi \pi^+ \pi^-$        | Belle |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------|
|                                                                                                                   | $\rightarrow J/\psi\omega(\rightarrow\pi^+\pi^-\pi^0)$ | Belle |
|                                                                                                                   | $\rightarrow D^0 \bar{D}^{*0}, D^0 \bar{D}^0 \pi^0$    | Belle |
|                                                                                                                   | $\rightarrow \gamma J/\psi, \gamma \psi$ (3686)        | Belle |
| $p\bar{p} \rightarrow \cdots + X(3872) (\rightarrow J/\psi \pi^+ \pi^-)$                                          |                                                        | CDF   |
| $pp \to \dots + X(3872) \begin{cases} \to J/\psi \pi^+ \pi^- \\ \to \gamma J/\psi, \gamma \psi(3686) \end{cases}$ |                                                        | LHC   |
|                                                                                                                   |                                                        | LHC   |
| $e^+e^-[\to Y(4260)]\to \gamma X(3872)(\to J/\psi\pi^+\pi^-)$                                                     |                                                        |       |
|                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                  |       |

[PRL 110 (2013) 222001]



- [63], BaBar [84]
- [75], BaBar [90]
- [76], BaBar [87]
- [75], BaBar [86]
- [67], D0 [68]
- b [91], CMS [73]
- b [<mark>92</mark>]
- II [93]

Most studied state, but many open questions  $\Gamma_{X(3872)} < 1.2 \text{ MeV}/c^2$  $M_{X(3872)} = 3871.69 \pm 0.17 \; {
m MeV}/c^2$  $M_{D^0} + M_{D^{*0}} = 3871.81 \pm 0.09 \text{ MeV}/c^2$ 









# X(3872) production



 $\sum_{\substack{p_{\perp} \text{ (GeV)}}} [D0, PRL 103 (2009) | 52001] [ATLAS, JHEP 01 (2017) | 17] \\ X(3872) \text{ seen in pp and and pp collisions.} [CDF, PRL 103 (2009) | 52001] [CMS, JHEP 04 (2013) | 54] \\ [LHCb, JHEP 04 (2013) | 54] [LHCb, JHEP 04 (2013) | 54]$ 

Compare cross-section with that of known molecules to understand X(3872) nature.





X(3872) seen in pp and and  $p\overline{p}$  collisions. [CDF, PRL 103 (2009)152001] [CMS, JHEP 04 (2013) 154] [LHCb, JHEP 04 (2013) 154]

Compare cross-section with that of known molecules to understand X(3872) nature.

NLO NRQCD considers X(3872) to be a mixture of  $\chi_{c1}(2P)$  and a D<sup>0</sup>D<sup>\*0</sup> molecular Supported by BR of state, with the production dominated by the  $\chi_{c1}(2P)$  part  $X(3872) \rightarrow [CC]\gamma$  decays [Artoisenet and Braaten, PRD 81 (2010) 114018]

[NPB 886 (2014) 665]



# Future X(3872) measurements

Charged partners of X(3872) predicted by some tetraquark models [Maiani et al]

Partners not observed in B decays and limits below what would be expected for isospin conservation  $\rightarrow X(3872)$  is iso-singlet?

Alternatively, the partners may be **broad** due to presence of thresholds, so may have evaded detection → **amplitude analysis** 

Make more precise width and mass measurement



FIG. 3. The  $J/\psi \pi^- \pi^0$  invariant mass in 10 MeV/ $c^2$  bins for (a)  $B^0 \to J/\psi \pi^- \pi^0 K^+$  and (b) for  $B^- \to J/\psi \pi^- \pi^0 K_S^0$ . No indication for the decay  $X^- \to J/\psi \pi^- \pi^0$  can be found.

$$\mathcal{B}(\bar{B}^0 \to K^- X^+) \times \mathcal{B}(X^+ \to \rho^+ J/\psi) < 4.2 \times 10^{-6},$$
$$\mathcal{B}(B^+ \to K^0 X^+) \times \mathcal{B}(X^+ \to \rho^+ J/\psi) < 6.1 \times 10^{-6},$$



$$\frac{\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X(3872) \to p\bar{p})}{\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to p\bar{p})} < 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) > 0.20 \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.25) \ (0.$$

(has implications for PANDA)

 $\times 10^{-2}$ 

 $R_{\chi_{c1}}^{X(3872)} < 0.39 \ (0.34)$  $R_{\rm xeo}^{X(3915)} < 0.14 \ (0.12)$  $R_{\chi_{c2}}^{\chi_{c2}(2P)} < 0.20 \ (0.16)$ 

95% (90%) CL upper limit on BR relative to conventional  $C\overline{C}$  with same  $J^{PC}$ 



### $X(4140) \rightarrow J/\psi \phi$ : some history 01<sup>2</sup> 8 8 MeV C CDF 4 **Seen** by CDF, D0 and CMS **8** Not seen by LHCb, BaBar, BES-III, Belle (YY fusion). [PRL 102, 242002 + arXiv: 1101.6058] 6 be

Well above open-charm threshold but has **narrow** width  $\rightarrow$  not conventional CC.

Also second state at higher mass...

### Full amplitude analysis of decay is essential!

| 0 | $\overline{C}$ | S | $\overline{S}$ |
|---|----------------|---|----------------|
|   |                |   |                |

| Experiment              | Y(4140)                                      |                                  |   |
|-------------------------|----------------------------------------------|----------------------------------|---|
| CDF [ <mark>69</mark> ] | $M = 4143.0 \pm 2.9 \pm 1.2, \Gamma$         | $= 11.7^{+8.3}_{-5.0} \pm 3.7$   |   |
| CDF [100]               | $M = 4143.4^{+2.9}_{-3.0} \pm 0.6, \Gamma =$ | $15.3^{+10.4}_{-6.1} \pm 2.5$    | М |
| DØ [102]                | $M = 4159.0 \pm 4.3 \pm 6.6, \Gamma$         | $= 19.9 \pm 12.6^{+1.0}_{-8.0}$  |   |
| CMS [74]                | $M = 4148.0 \pm 2.4 \pm 6.3,$                | $\Gamma = 28^{+15}_{-11} \pm 19$ | N |



$$M = 4313.8 \pm 5.3 \pm 7.3, \Gamma = 38^{+30}_{-15} \pm 16$$

[Belle PRL 104, 112004] [BES-III PRD 91 (2015) 032002]





assumptions about K\* contributions



# $\rightarrow J/\psi \phi K^{\dagger}$ data sample

assumptions about K\* contributions









# Which K\* resonances to include?



Experimental measurements of **well-established** and **unconfirmed** K\* resonances

Higher spin states expected to be suppressed in B decays due to orbital angular momentum required to produce them



### 104 free parameters in fit p-value $H_0$ (only K\* resonances) < 10<sup>-4</sup>



16



Inclusion of exotic Z states does not improve fit.



X(4700)

 $5.6\sigma$ 



 $120\pm31_{-33}^{+42}$ 

 $4704 \pm 10^{+14}_{-24}$ 



# The X(5568)<sup>±</sup> $\rightarrow$ B<sub>s</sub> $\pi$ <sup>±</sup>?

 $4.8\sigma$  claim for exotic state

**Large** B<sub>s</sub> production fraction:  $\rho_X = (8.6 \pm 1.9 \pm 1.4)\%$ Not due to reflections from kaons/pions

$$M = 5567.8 \pm 2.9^{+0.9}_{-1.9} \text{MeV}/c^2$$
  
$$\Gamma = 21.9 \pm 6.4^{+5.0}_{-2.5} \text{MeV}/c^2$$

Possible **bsud** tetraquark/molecule but difficult to explain when considering QCD chiral symmetry, heavy quark symmetry and threshold effects.

> [Burns, Swanson, arXiv: 1603.04366] [Guo et al, arXiv:1603.06316] [Liu, Li, arXiv: 1603.04366]

No sign on the lattice [Lang et al., arXiv:1607.03185]

### [D0 PRL 117, 022003 (2016)]

D0 Run II, 10.4 fb<sup>1</sup>









# LHC searches for X(5568)<sup>±</sup>

LHCb use >100k B<sub>s</sub> mesons and combine with  $\pi^{T}$ . Sample 20x larger than D0 and much less background.  $B_s$  and  $\pi^{-}$  required to come from same PV.

Fit signal using S-wave Breit-Wigner with mass and width of claimed D0 signal.



How signal would look according to D0 result

 $\rho_X^{\text{LHCb}}(B_s^0 p_{\text{T}} > 5 \,\text{GeV}/c) < 0.009\,(0.010) @ 90\,(95)\,\% \,\text{CL}$  $\rho_X^{\text{LHCb}}(B_s^0 p_{\text{T}} > 10 \,\text{GeV}/c) < 0.016\,(0.018) @ 90\,(95) \% \,\text{CL}$ 







# Exotic baryons



Large production of b-baryons at LHC.



### Pentaquark observation



 $\Lambda_b^0$ 



[PRL 115 (2015) 072001]



### Results without P<sub>c</sub> states



Using full set of  $\Lambda^*$ 's the m(Kp) distribution looks good but not m(J/ $\psi$ p).

[PRL 115 (2015) 072001]

Addition of non-resonant, extra  $\Lambda^*$ 's, all  $\Sigma^*$  (isospin violating process) does not help.



### **Extended model with one P**<sub>c</sub>



Try all  $\Lambda^*$ 's with  $J^P$  up to  $7/2^{\pm}$ Best fit with a  $J^P = 5/2^{\pm}$  pentaquark

[PRL 115 (2015) 072001]

Best fit with a J<sup>P</sup> = 5/2<sup>±</sup> pentaquark gives improvement, but m(J/ $\psi$ p) still not good  $\sqrt{\Delta 2 \mathcal{L}} = 14.7\sigma$ 



## Reduced model with two P<sub>c</sub>'s



### $J^{P} = (3/2^{+}, 5/2^{-})$ and $(5/2^{+}, 3/2^{-})$ also give good fits: need more data.

No improvement with addition of other resonances Significance evaluated using toy simulation Need opposite parity to explain the data



## Angular distributions

Good fit to the angular observables





## Angular distributions

Good fit to the angular observables



![](_page_26_Picture_3.jpeg)

### **Resonant behaviour - a bound state?**

Observe rapid change of phase near maximum of magnitude  $\Rightarrow$  resonance!

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_4.jpeg)

## Pentaquark model-independent

 $\Lambda^*$  spectrum is largest systematic uncertainty in observation of  $P_c$  states.

Model-independent approach: do not assume anything about  $\Lambda^*$ ,  $\Sigma^*$  or NR composition, spin, masses, widths or massshape.

Only restrict the maximal spin of allowed  $\Lambda^*$ components at given m(Kp).

Extension of [BaBar PRD 79 (2009) 112001]

### Theory predictions for $\Lambda^*$ Well established $\Lambda^*$ states

![](_page_28_Figure_6.jpeg)

## Pentaquark model-independent [PRL 117 (2016) 082002]

![](_page_29_Figure_1.jpeg)

Maximal rank of the Legendre polynomial  $l_{max}$ cannot be higher than  $2J_{max}$ , where  $J_{max}$  is twice the highest (Kp) spin which is present in the data at a given m(Kp) value

spin for each m(Kp)

Working with JPAC to use better models of  $\Lambda^*$  resonances in future amplitude fits

![](_page_29_Picture_5.jpeg)

![](_page_29_Figure_6.jpeg)

![](_page_29_Picture_7.jpeg)

# $\Lambda_b \rightarrow J/\psi p\pi^-$ pentaquark search

![](_page_30_Figure_1.jpeg)

# $\Lambda_b \rightarrow J/\psi p\pi^-$ pentaquark search

**N\*-only model** not a good fit

Good fit using 15 N\* components + exotic components

### 3.1 $\sigma$ for (2 $P_c$ + $Z_c$ ) or 3.3 $\sigma$ for 2 $P_c$ states

Main systematics from fixed  $P_c/Z_c$  mass/width parameters, N\* model and P<sub>c</sub> spin

![](_page_31_Figure_5.jpeg)

States  $P_c(4380)^+$  $P_c(4450)^+$  $Z_c(4200)^-$ 

Fit fraction (%) $5.1 \pm 1.5^{+2.1}_{-1.6}$  $7.7 \pm 2.8^{+3.4}_{-4.0}$ 

![](_page_31_Picture_9.jpeg)

![](_page_31_Figure_10.jpeg)

![](_page_31_Figure_11.jpeg)

## Pentaquark interpretations

 $D^*\Sigma_c - D^*\Sigma_c^*$  molecular state, tightly bound pentaquark or a hybrid?

Reproduces phase motion of  $P_c(4450)$ , but what about  $P_c(4380)$ ?

Rescattering would not explain narrow enhancement above  $\chi_{c1}p$  threshold.

![](_page_32_Figure_5.jpeg)

[Maiani et al arXiv:1507.04980] [Lebed arXiv:1507.05867] [Zhu arXiv:1510.08693] [Roca et al, PRD 92 (2015) 094003]

![](_page_32_Figure_7.jpeg)

![](_page_32_Picture_8.jpeg)

# **Observation of the decays** $\Lambda^0_b \rightarrow \chi_{cJ} p K^-$

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Picture_3.jpeg)

# **Observation of the decays** $\Lambda^0_b \rightarrow \chi_{cJ} p K^-$

![](_page_34_Figure_1.jpeg)

Test rescattering hypothesis by searching for  $P_c$  contributions.

Need 8D amplitude analysis of the final state to search for pentaquarks.

### New technique: build full amplitude using dataflow graph

[tensorflow.org]

![](_page_34_Figure_6.jpeg)

![](_page_35_Figure_1.jpeg)

### **Connections with "conventional" spectroscopy**

Discovery of  $\Omega_c^{**}$  and Xi<sub>cc</sub><sup>++</sup> have spurred theoretical investigations, motivated by the calibration of the binding energy of their constituent **diquarks**.

Calibrating diquark model parameters from  $\Omega_c^{**}$ , treating them as [ss]c diquark-quark objects. Can then use this to make predictions [Ali et al., arXiv:1708.04650] about the Y states.

Not only are some of the  $\Omega_c^{**}$  states now thought of as potential pentaquarks, but theorists are using these as a basis to propose [Mehen arXiv:1708.05020] [Karliner and Rosner arXiv:1707.07666] other candidates.

e.g., doubly-bottom tetraquark (~10.4 GeV) that is stable to EM/ strong interactions, potentially narrow, with very interesting decay modes (B, D, double- $J/\psi$  ...)

![](_page_36_Figure_6.jpeg)

![](_page_36_Picture_7.jpeg)

![](_page_36_Picture_8.jpeg)

I. Observe states in different **production** mechanisms e.g. Photo-production  $\gamma p \rightarrow J/\psi p$  experiment has been approved at JLab

[Meziani et al., arXiv:1609.00676]

![](_page_37_Picture_4.jpeg)

![](_page_37_Picture_5.jpeg)

- 1. Observe states in different **production** mechanisms e.g. Photo-production  $\gamma p \rightarrow J/\psi p$  experiment has been approved at JLab
- 2. Observe states in different **decay** modes Search for  $\overline{CC}$ , open-charm and charm-less modes using all flavours of b-hadron Transitions between exotic states (e.g., Y(4260)  $\rightarrow$  X(3872) $\gamma$ ) Publish non-observations!

[Meziani et al., arXiv:1609.00676]

 $\Lambda_b^0 \to \Sigma_c^+ D^ \Lambda_b^0 \to \Lambda_c^+ \overline{D}^{*0}$ 

If exotic states are molecules then their open-charm decays may be dominant

![](_page_38_Picture_8.jpeg)

![](_page_38_Picture_9.jpeg)

- I. Observe states in different **production** mechanisms e.g. Photo-production  $\gamma p \rightarrow J/\psi p$  experiment has been approved at JLab
- 2. Observe states in different **decay** modes Search for  $\overline{CC}$ , open-charm and charm-less modes using all flavours of b-hadron Transitions between exotic states (e.g., Y(4260)  $\rightarrow$  X(3872) $\gamma$ ) Publish non-observations!
- [PRL 105, 232001 (2010)]

[Meziani et al., arXiv:1609.00676]

 $\Lambda_b^0 \to \Sigma_c^+ D^ \Lambda_b^0 \to \Lambda_c^+ \overline{D}^{*0}$ 

If exotic states are molecules then their open-charm decays may be dominant

3. Look for isospin (ccudd), strangeness (ccuds), bottom (bbuud) partners  $\Lambda^0_b o P^0_{cs} \phi o J/\psi \Lambda \phi$ 

![](_page_39_Picture_10.jpeg)

![](_page_39_Picture_11.jpeg)

![](_page_39_Picture_12.jpeg)

- 1. Observe states in different **production** mechanisms e.g. Photo-production  $\gamma p \rightarrow J/\psi p$  experiment has been approved at JLab
- 2. Observe states in different **decay** modes Search for  $\overline{CC}$ , open-charm and charm-less modes using all flavours of b-hadron Transitions between exotic states (e.g., Y(4260)  $\rightarrow$  X(3872) $\gamma$ ) Publish non-observations!
- [PRL 105, 232001 (2010)]
- 4. Measure branching ratios

[Meziani et al., arXiv:1609.00676]

 $\Lambda_b^0 \to \Sigma_c^+ D^ \Lambda_b^0 \to \Lambda_c^+ \overline{D}^{*0}$ 

If exotic states are molecules then their open-charm decays may be dominant

3. Look for isospin (ccudd), strangeness (ccuds), bottom (bbuud) partners  $\Lambda^0_b o P^0_{cs} \phi o J/\psi \Lambda \phi$ 

![](_page_40_Picture_11.jpeg)

![](_page_40_Picture_12.jpeg)

![](_page_40_Picture_13.jpeg)

- I. Observe states in different **production** mechanisms e.g. Photo-production  $\gamma p \rightarrow J/\psi p$  experiment has been approved at JLab
- 2. Observe states in different **decay** modes Search for  $\overline{CC}$ , open-charm and charm-less modes using all flavours of b-had Transitions between exotic states (e.g.,  $Y(4260) \rightarrow X(3872)\gamma$ ) Publish non-observations!
- 3. Look for **isospin** (ccudd), **strangeness** (ccuds), **bottom** (bbuud) partner [PRL 105, 232001 (2010)]
- 4. Measure branching ratios
- 5. Measure angular distributions and quantum numbers Amplitude (partial wave) analyses are crucial, as are accounting for threshold effects Publish experimental efficiencies to allow others to better use results

### LHC, Belle-II, BES-III, COMPASS, JLab and PANDA all have role to play!

![](_page_41_Figure_7.jpeg)

![](_page_41_Picture_10.jpeg)

### Ad break

### http://higgs.ph.ed.ac.uk/workshops/exotic-hadron-spectroscopy-2017

### **Higgs Centre** for Theoretical Physics

| Past Workshops | Exotic hadron spectroscopy 201                                                                                                                                   |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2012 (2)       | <ul> <li>11.12.2017 to 13.12.2017</li> <li>Organisers: Greig Cowan, Matthew Needham, Mikhail Bas</li> <li>Venue: Higgs Centre for Theoretical Physics</li> </ul> |  |  |
| 2013 (7)       |                                                                                                                                                                  |  |  |
| 2014 (13)      | Timetable: https://indico.ph.ed.ac.uk/event/31/                                                                                                                  |  |  |
| 2015 (0)       | List of Participants                                                                                                                                             |  |  |

### Please register if you would like to attend. Get in contact if you would like to propose a topic.

![](_page_42_Picture_6.jpeg)

![](_page_42_Picture_7.jpeg)

### 7

shkanov, Daniel Watts, Alex Lenz

![](_page_42_Picture_12.jpeg)

![](_page_42_Picture_13.jpeg)

### Summary

Revolution in heavy-quark spectroscopy since 2003 discovery of X(3872).

~30 XYZ and  $P_c$  states observed using different production and decay mechanisms.

Exotic states provide ideal foundation to deepen understanding of non-perturbative QCD dynamics.

Crucial to confirm observations where possible and use state-of-the-art amplitude analyses and collaboration with theorists to understand observed states.

![](_page_43_Figure_5.jpeg)

![](_page_43_Picture_6.jpeg)

![](_page_43_Picture_7.jpeg)

Backup

## Evidence for exotics in $\Lambda_b \rightarrow J/\psi p\pi^-$

$$\frac{\mathcal{B}(\Lambda_b^0 \to J/\psi p \pi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)} = 0.08$$

Observations of the  $P_c^+$  states in another decay could imply they are genuine exotic

$$R_{\pi^-/K^-} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to \pi^- P_c^+)}{\mathcal{B}(\Lambda_b^0 \to K^- P_c^+)} \approx 0.07 - 0.0$$

![](_page_45_Figure_4.jpeg)

[Cheng et al. PRD 92, 096009 (2015)]

 $824 \pm 0.0025 \,(\text{stat}) \pm 0.0042 \,(\text{syst})$ [LHCb JHEP 1407, 103 (2014)]

baryonic states, other than kinematical effects, e.g. so-called triangle singularity. [arXiv:1512.01959]

![](_page_45_Figure_8.jpeg)

[Hsiao, Phys. Lett. B 751, 572 (2015)]

![](_page_45_Picture_10.jpeg)

![](_page_45_Picture_11.jpeg)

![](_page_45_Picture_12.jpeg)

## $\Lambda_b \rightarrow J/\psi p\pi^-$ pentaquark search

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_2.jpeg)

No prominent pentaquark-like peaks

![](_page_46_Picture_4.jpeg)

47

## Pentaquark model-independent

![](_page_47_Figure_3.jpeg)

![](_page_47_Figure_5.jpeg)

![](_page_47_Figure_6.jpeg)

# Pentaquark model-independent

Simulate phase-space decays of  $\Lambda_b^0 o J/\psi p K^-$ 

Weight according to m(Kp) and the moments (with  $l_{max}$ -filter applied)

Look at reflections of the pK system into the J/ $\psi$ p system  $\rightarrow$  pK reflections cannot explain narrow structure!

![](_page_48_Figure_5.jpeg)

[PRL 117 (2016) 082002]

![](_page_48_Picture_9.jpeg)

![](_page_48_Picture_17.jpeg)

### For the future: $B_s^0 \rightarrow J/\psi \phi \phi$

![](_page_49_Figure_4.jpeg)

[JHEP 1603 (2016) 040]

![](_page_49_Picture_6.jpeg)

# $Z_c(3900)^{\pm}$ in $e^+e^- \rightarrow Y(4260) \rightarrow \pi^+\pi^- J/\psi$

![](_page_50_Figure_5.jpeg)

## Understanding the $Z_c(3900)^{\pm}$

Some lattice QCD calculations do not support existence of  $Z_c(3900)^{\pm}$  [Prelovsek et al PRD 91 (2015) 014504]

No sign of  $Z_c(3900)^{\pm} \rightarrow J/\psi\pi^{\pm}$  in B decays or photo-production ( $\gamma p \rightarrow J/\psi\pi^{\pm} n$ ) [COMPASS, PLB 742, 330 (2015)]

Indicates that  $Z_c(3900)^{\pm}$  (and  $Z_c(4020)^{\pm}$ ) may not be dynamical in nature but some kinematic effect (e.g., threshold cusp)? [Swanson PRD 91 (2015) 034009] [Ikeda et al arXiv:1602.03465]

[Szczepaniak PLB 747 (2015) 410]

Or maybe not?

[Cleven et al arXiv:1510.00854]

![](_page_51_Figure_7.jpeg)

### **Charmonium production in b-hadron decays**

![](_page_52_Figure_1.jpeg)

### [PLB 769 (2016) 305-313]

![](_page_52_Picture_3.jpeg)

53

### **Charmonium production in b-hadron decays** $\eta_c(1S)$ 2000 LHCb Candidates/(10 MeV)Resonances described by $R^{X(3872)}_{\chi_{c1}}$ **RBW** $\otimes$ double-Gaussian 1500 No sign of X(3872) 1000 or X(3915) $\rightarrow \phi \phi$ $\chi_{c0}$ $\overline{CC}$ with same $J^{PC}$ $\chi_{c1}$ $\chi_{c2}$ $\eta_c(2S)$ 500

3400

 $b \rightarrow ([c\bar{c}] \rightarrow \phi \phi) X$ by requiring separation between primary and secondary vertices

3200

3000

2800

![](_page_53_Figure_2.jpeg)

![](_page_53_Picture_4.jpeg)

![](_page_53_Figure_5.jpeg)

![](_page_53_Picture_6.jpeg)