Search for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay at NA62 experiment

Marie Skłodowska-Curie Actions

Viacheslav Duk, University of Birmingham for the NA62 collaboration

UK Flavour 2017 Durham, 04-06.09.2017

Outlook

- 1. Motivation
- 2. NA62 experiment
- 3. Event selection
- 4. Analysis of the 2016 data
- 5. Conclusion

2 modes: charged, neutral

- FCNC loop process
- Theoretically clean
- $\blacktriangleright \text{ CKM suppression: BR ~ } |V^*_{ts} V_{td}|^2$

Hadronic matrix element extracted from well-known decay $K^+ \rightarrow e^+ v \pi^0$ SM one-loop diagrams: box and penguins

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = \left(\kappa_{+} \left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X(x_{t}) + \frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right) (1 + \Delta_{EM})$$

$$BR(K_{L} \to \pi^{0} \nu \overline{\nu}) = \left(\kappa_{L} \left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} \right)^{2} \left(\operatorname{Im} \lambda_{t} X(x_{t}) \right)^{2} \right) (1 + \Delta_{EM})$$

$$EM \text{ radiative charm correction contribution}$$

$$\lambda_{c} = V_{us}$$

$$\lambda_{c} = V_{cs} V_{cd}$$

$$\lambda_{t} = V_{ts}^{*} V_{td}$$

$$BR(K^{+} \to \pi^{+} \nu \nu) = (8.4 \pm 1.0) \times 10^{-11}$$

$$BR(K^{0} \to \pi^{0} \nu \nu) = (3.4 \pm 0.6) \times 10^{-11}$$

• V.Duk, University of Birmingham

$K \rightarrow \pi v v$ in New Physics

Searches for NP in $K \rightarrow \pi \nu \nu$:

- Complementary to LHC
- Several scenarios possible
- Measurements of charged and neutral mode will allow to discriminate between NP scenarios

Randall - Sundrum

[Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]

Littlest Higgs

[Blanke, Buras, Recksiegel, EPJ C76 (2016) no.4 182]

$K \rightarrow \pi v v$ in experimental physics

 K^+ → π^+ vv E787/E949 experiment @ BNL

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = \left(1.73^{+1.15}_{-1.05}\right) \times 10^{-10}$

 $K^0 \rightarrow \pi^0 vv$ E391 experiment @ KEK

 $BR(K_L \to \pi^0 \nu \bar{\nu}) < 2.6 \times 10^{-8}$

Phys. Rev. D 81, 072004 (2010)

Phys. Rev. D 77, 052003 (2008), Phys. Rev. D 79, 092004 (2009)

NA62 goals

Main goal:

→ Measure BR(K⁺ $\rightarrow \pi^+ \nu \nu$) with 10% precision

Requirements:

- \geq O(100) events
- \blacktriangleright ~10¹³ kaon decays
- ➤ ~10% signal acceptance
- ➤ >10¹² background suppression

Technique:

Kaon decay-in-flight

Beyond the baseline:

- LFV/LNV decays in kaon decays
- Heavy neutral lepton searches
- \succ π^0 decays
- Hidden sector particles searches

NA62 @ SPS CERN

NA62 prehistory:

- 1997-2001: NA48 (ε'/ε in K⁰)
- 2002: NA48/1 (K_s rare decays)
- 2003-2004: NA48/2 (K[±] decays)
- > 2007-2008: NA62-RK (Ke2/Kμ2)

NA62 history: 2006: Proposal 2007-2011: R&D 2011-2014: construction & installation 2012: Technical run (partial layout) 2014: Pilot run (full layout) 2015: Commissioning run 2016: Commissioning run + Physics run

NA62 collaboration:

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, Sofia, TRIUMF, Turin, Vancouver (UBC)

NA62 detector

Beam:

- SPS primary beam: 400 GeV/c, ~33 ·10¹¹ ppp on target (nominal intensity)
- Secondary hadron beam: 75 GeV/c, ~750 MHz
 @ GTK
- ✓ Beam composition: 6% K⁺, 70% π ⁺, 24% p
- Beam geometry: 60 x 30 mm², 100 µrad divergency (RMS)

NA62:

- ✓ ~5 MHz kaon decay rate
- ✓ ~10% signal efficiency
- ✓ 60 m fiducial volume
- ✓ Trackers (GTK for P_K , STRAW for P_π)
- Cherenkov counters for PID (KTAG for K, RICH for π)
- ✓ Hadron calorimeters for PID (MUV1,2)
- Photon veto system (LAV, LKr, IRC, SAC)

Signal vs background

Main kinematical variable for the signal: $m_{miss}^2 = (P_K - P_{\pi})^2$

$$m_{miss}^{2} \simeq m_{K}^{2} \left(1 - \frac{|P_{\pi}|}{|P_{K}|}\right) + m_{\pi}^{2} \left(1 - \frac{|P_{K}|}{|P_{\pi}|}\right) - |P_{K}||P_{\pi}|\theta_{\pi K}^{2}$$

Decay	backgrounds

Mode		BR		
$\mu^+ v(\gamma)$	$K_{\mu 2}$	63.5%		
$\pi^+\pi^0(\gamma)$	$K_{2\pi}$	20.7%		
$\pi^+\pi^+\pi^-$	$K_{3\pi}$	5.6%		
$\pi^0 e^+ v$	K _{e3}	5.1%		
$\pi^0 \mu^+ \nu$	$K_{\mu 3}$	3.3%		
$\pi^+\pi^-e^+v$	$K_{e4}(+-)$	4.1×10^{-5}		
$\pi^0\pi^0e^+v$	$K_{e4}(00)$	2.2×10^{-5}		
$\pi^+\pi^-\mu^+\nu$	$K_{\mu 4}$	1.4×10^{-5}		
$e^+v(\gamma)$	K _{e2}	1.5×10^{-5}		

Other background:

- Accidental tracks in time with kaon tracks
- Beam-gas and upstream interactions
 - V.Duk, University of Birmingham

Event selection principles

Kaon detection	t _K	рк	PID	K interactions
KTAG	\checkmark		\checkmark	
GTK	\checkmark	\checkmark		
CHANTI				\checkmark

Pion detection	t _π	p_{π}	PID	π interactions
Spectrometer		\checkmark		
RICH	\checkmark		\checkmark	
CHOD	\checkmark			\checkmark
MUV1,2			\checkmark	

Keystones:

- O(10⁴) background suppression from kinematics
- O(100 ps) timing between detectors
- >10⁷ muon suppression
- > $10^7 \pi^0$ suppression

Event reconstruction:

- ➢ 1 pion track
- \sim K-π track matching (fast timing)
- Cuts on m²_{miss} (Region I and II)
- $\succ \quad \text{Cut on } P_{\pi} : 15 < P_{\pi} < 35 \text{ GeV/c}$
- (>40GeV missing energy)

L0 trigger:

- 1 secondary charged track
- No muons among decay products
- "pion-like" energy deposition in calorimeters
- Precise time from RICH

veto:

- upstream veto (CHANTI)
- photon vetoes
 (LAV/LKr/IRC/SAC)
- muon veto (MUV3)

2016 physics run

- ➤ ~4 x 10¹¹ kaon decays collected in 2016
- ➢ This talk: analysis of ~5% (2.3*10¹⁰) 2016 data
- > Beam intensity: 13×10^{11} ppp (40% of the nominal)

Kaon-pion matching

Kaon time:
KTAG: σ ~ 80 ps
GTK: σ ~ 100 ps

Pion time:
≻ CHOD: σ ~ 250 ps
≻ RICH: σ ~ 150 ps

K- π matching:

- Spatial track intersection:
 σ(CDA) ~ 1.5 mm
- Mistagging probability 1.7%
- Efficiency 75%

Signal regions

Signal region:

• V.Duk, University of Birmingham

3 types of m_{miss}^2 used: $\sim M_{miss}^2$: P_K (GTK), P_{π} (STRAW) $\sim M_{miss}^2$ (RICH) : P_K (GTK), P_{π} (RICH) $\sim M_{miss}^2$ (No GTK): P_K (nominal), P_{π} (STRAW)

Kinematic regions and suppression

Pion ID

Calorimeters: $\epsilon(\mu) \sim 10^{-5}$ $\epsilon(\pi) \sim 80\%$

RICH: ε(μ) ~ 10⁻² ε(π) ~ 90%[ring reco] x 80% [PID]

RICH + calorimeters: $\epsilon(\mu) \sim 10^{-7}$ $\epsilon(\pi) \sim 60\%$ (momentum dependant)

Photon rejection

- Photon veto detectors: LAV, LKr, IRC, SAC
- > Kinematic region for the rejection estimate: $K^+ \rightarrow \pi^+ \pi^0$ region
- \succ K⁺→π⁺ π⁰ suppression: ε = (**1.2** ± **0.2**) * **10**⁻⁷
- Accidental losses: 15-16% (at 40% of the nominal intensity)

Preliminary result

Analysis optimization in progress

0 events observed

1 event in the box: m²_{miss} (no GTK) outside the signal region

Expected signal: 0.064

Acceptance: 0.033 Normalization: $K^+ \rightarrow \pi^+ \pi^0$

□ Expected background: <0.057

Bkg data-driven estimates:

$K^+ \rightarrow \pi^+ \pi^0$	0.024
$K^+ \rightarrow \pi^+ \pi^- \pi^-$	0.017
$K^{\scriptscriptstyle +} {\rightarrow} \mu^{\scriptscriptstyle +} \nu_{\mu}$	0.011
Beam-induced	< 0.005
Total bkg	<0.057

Prospects

- > Analysis of 2016 data: reach SM sensitivity
- > 2017 physics run: 4 months, beam intensity ~55-60% of the nominal one
- > 2018: 4 months run scheduled
- ➤ 2019-2020: LS2
- > 2021-2023: more K⁺ $\rightarrow \pi^+ \nu \nu$ runs (and/or LFV/LNV, beam dump)

Accelerator schedule	2015 2016 2017 2018	2019 2020	2021 2022 2023	2024 2025 2026	2027
LHC	Run 2	LS2	Run 3	LS3	Run 4
SPS				NA stop SPS stop	

Conclusion

- □ The decay $K^+ \rightarrow \pi^+ \nu \nu$ provides unique opportunities for NP searches complementary to LHC
- □ The NA62 is aimed at measuring BR(K⁺ $\rightarrow \pi^+\nu\nu$) with ~10% precision by collecting O(100) events
- NA62 is running; detector performance within expectations
- □ SM sensitivity to be reached soon, data analysis ongoing
- BR measurement: in few years

Thank you!