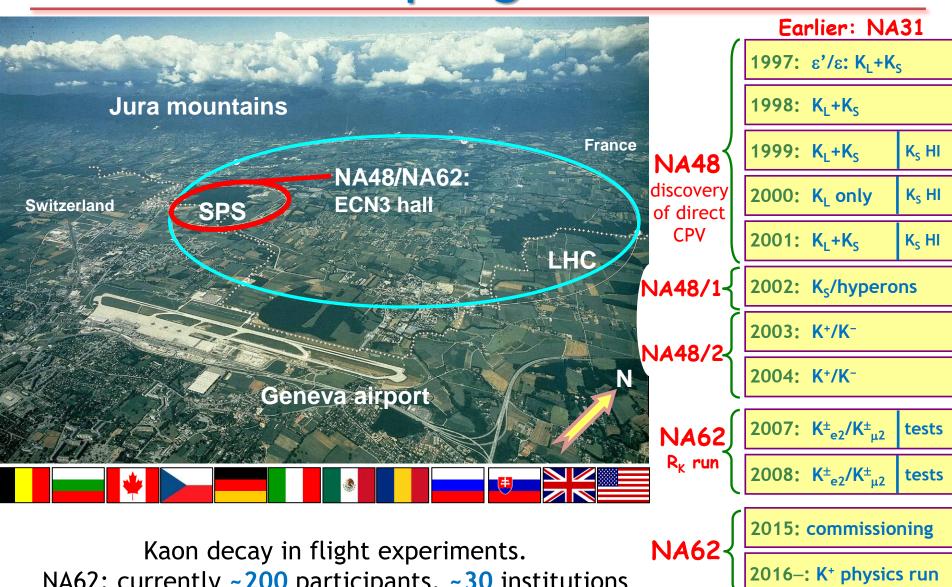


Searches for hidden-sector particles & LFC tests at NA62

Evgueni Goudzovski

(University of Birmingham)


Outline:

- 1) Introduction: K[±] decay experiments at CERN
- 2) Searches for heavy neutral lepton production in K⁺ decays
- 3) Searches for dark photon in π^0 and K⁺ decays
- 4) Searches for LNV and resonances in $K^{\pm} \rightarrow \pi \mu \mu$ decays
- 5) NA62 operation in beam dump mode

Kaon programme at CERN

NA62: currently ~200 participants, ~30 institutions

K[±] decay experiments at CERN

Experiment	NA48/2	NA62 R _K run	NA62
	(K^\pm)	(K^\pm)	(K ⁺)
Data taking period	2003–2004	2007–2008	2016–2018
Beam momentum, GeV/c	60	74	75
RMS momentum bite, GeV/c	2.2	1.4	0.8
Spectrometer thickness, X ₀	2.8%	2.8%	1.8%
Spectrometer P _T kick, MeV/c	120	265	270
$M(K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-})$ resolution, MeV/c ²	1.7	1.2	0.8
K decays in fiducial volume	2×10 ¹¹	2×10 ¹⁰	1.2×10 ¹³
Main trigger	multi-track; K [±] →π [±] π ⁰ π ⁰	Min.bias + e [±]	$K_{\pi\nu\nu}$ + rare + forbidden decays

The NA62 experiment

NA48 detector

NA62 detector

- ❖ Main goal: collect 100 SM K⁺→ π ⁺νν decays, BR_{SM}=(8.4±1.0)×10⁻¹¹.

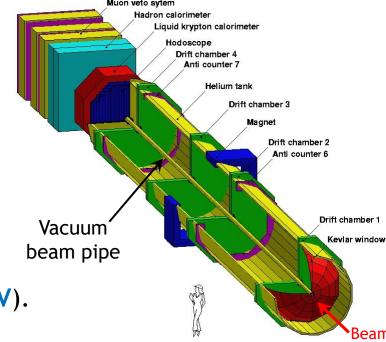
 Buras et al., JHEP 1511 (2015) 033
- ❖ Current K⁺→ π ⁺vv experimental status: BR = (1.73 $^{+1.15}_{-1.05}$)×10⁻¹⁰ from 7 candidates with expected background of 2.6 observed by BNL-E949.

NA48/2 and NA62-R_K experiments

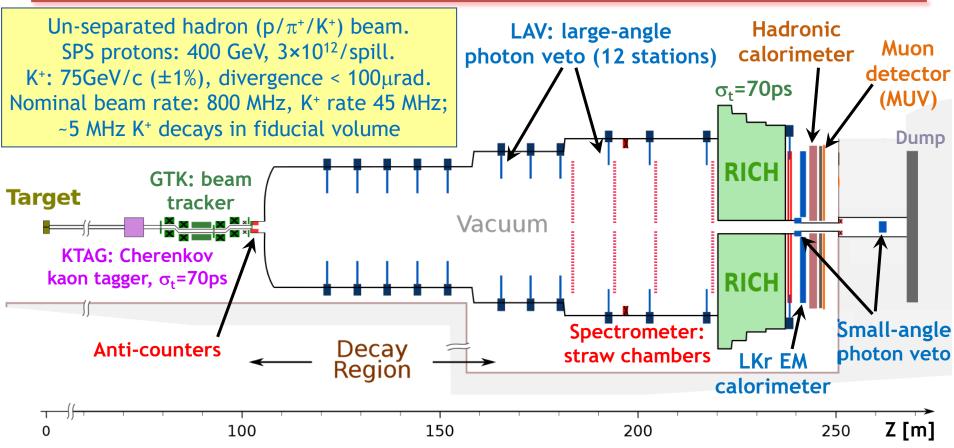
2003–2007: charged kaon beams, NA48 detector [NIM A574 (2007) 433]

Narrow momentum band K[±] beams:

 $P_K = 60 (74) \text{ GeV/c}, \delta P_K / P_K \sim 1\% \text{ (rms)}.$


- ❖ Maximum K[±] decay rate ~100 kHz;
- **❖ NA48/2:** six months in 2003–04;
- $Arr NA62-R_K$: four months in 2007.

Principal subdetectors:


- * Magnetic spectrometer (4 DCHs)
 4 views/DCH: redundancy \Rightarrow efficiency; $\delta p/p = 0.48\% \oplus 0.009\%p$ [GeV/c] (in 2007)
- Scintillator hodoscope (HOD)
 Fast trigger, time measurement (150ps).
- Liquid Krypton EM calorimeter (LKr)

 High granularity, quasi-homogeneous; $\sigma_E/E = 3.2\%/E^{1/2} \oplus 9\%/E \oplus 0.42\%$ [GeV]; $\sigma_x = \sigma_v = 4.2 \text{mm}/E^{1/2} \oplus 0.6 \text{mm}$ (1.5 mm@10GeV).

The NA62 detector

- ❖ Expected single event sensitivity for K⁺ decays: BR~10⁻¹².
- * Measured kinematic rejection factors (limited by beam pileup & MCS tails): 6×10^{-4} for $K^+\to\pi^+\pi^0$, 3×10^{-4} for $K\to\mu^+\nu$.
- \clubsuit Hermetic photon veto: measured $\pi^0 \rightarrow \gamma \gamma$ decay suppression = 1.2×10⁻⁷.
- ❖ Particle ID (RICH+LKr+HAC+MUV): ~10⁻⁷ muon suppression.

NA62 physics programme

- ❖ NA62 Run 2016–2018: focused on the "golden mode" $K^+ \rightarrow \pi^+ \nu \nu$.
 - ✓ Trigger bandwidth for other physics is limited.
 - ✓ Several measurements at SES~10⁻¹²: K⁺ $\rightarrow \pi$ ⁺A' (A' \rightarrow invisible), π ⁰ $\rightarrow \nu\nu$.
 - ✓ Improve on precision where extreme SES is not required: $K^+ \rightarrow \ell^+ N$, ...
 - ✓ Sensitivities to most rare/forbidden decays are limited but still often world-leading (~10⁻¹⁰ to ~10⁻¹¹).
 - ✓ Proof of principle for a broad rare & forbidden decay programme.
- ❖ NA62 Run 2021–2024: programme is under discussion.

[Presented at Physics Beyond Colliders workshops, CERN, Sep 2016 & Mar 2017]

- Existing apparatus with different and improved trigger logic.
- ✓ Further $K^+ \rightarrow \pi^+ \nu \nu$ data collection.
- Rare/forbidden K⁺ and π^0 decays at SES~10⁻¹²: K⁺ physics: K⁺ $\rightarrow \pi^+ \ell^+ \ell^-$, K⁺ $\rightarrow \pi^+ \gamma \ell^+ \ell^-$, K⁺ $\rightarrow \ell^+ \nu \gamma$, K⁺ $\rightarrow \pi^+ \gamma \gamma$, ... π^0 physics: $\pi^0 \rightarrow e^+ e^-$, $\pi^0 \rightarrow e^+ e^- e^+ e^-$, $\pi^0 \rightarrow 3\gamma$, $\pi^0 \rightarrow 4\gamma$, ... Searches for LFV/LNV: K⁺ $\rightarrow \pi^- \ell^+ \ell^+$, K⁺ $\rightarrow \pi^+ \mu e$, $\pi^0 \rightarrow \mu e$, ...
- ✓ Beam dump with ~10¹⁸ POT (=3 months of dedicated data collection): hidden sector (decays of long-lived HNL, DP, ALP).

Search for heavy neutral lepton production with 2015 data

To be published in 2017; see also Phys. Lett. B772 (2017) 712

Heavy neutral leptons in vMSM

Neutrino minimal SM (vMSM) = SM + 3 right-handed neutral heavy leptons.

[Asaka et al., PLB 631 (2005) 151]

Masses: $m_1 \sim 10 \text{ keV}$ [DM candidate]; $m_{2.3} \sim 1 \text{ GeV}$.

HNLs observable via **production** and **decay**.

$$\Gamma(K^{+} \rightarrow \ell^{+}N) = \Gamma(K^{+} \rightarrow \ell^{+}v) \rho_{\ell}(m_{N}) |U_{\ell 4}|^{2}$$

$$R. Shrock$$

$$PLB96(1980)159$$

$$\rho_{\mu}(m_{N})$$

$$R_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$\approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

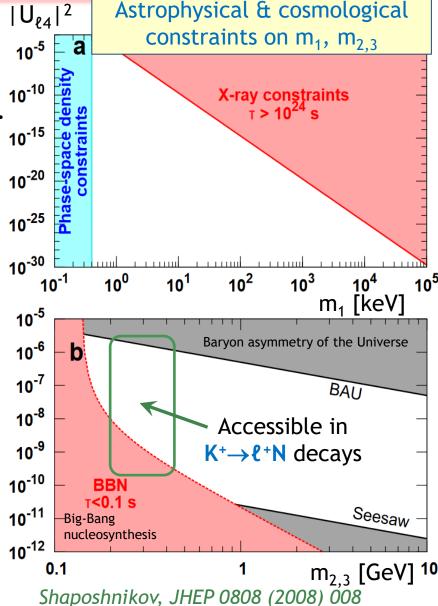
$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

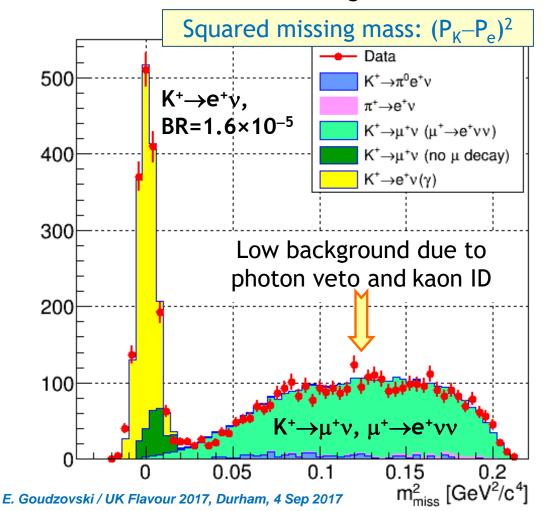

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

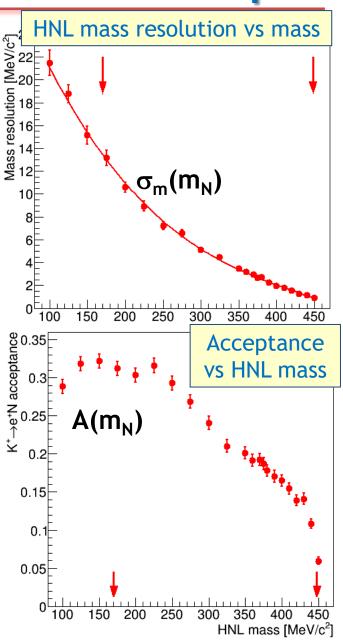
$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

$$N_{K} = \Gamma(K^{+} \rightarrow \mu^{+}v) \approx 2.5 \times 10^{-5}$$

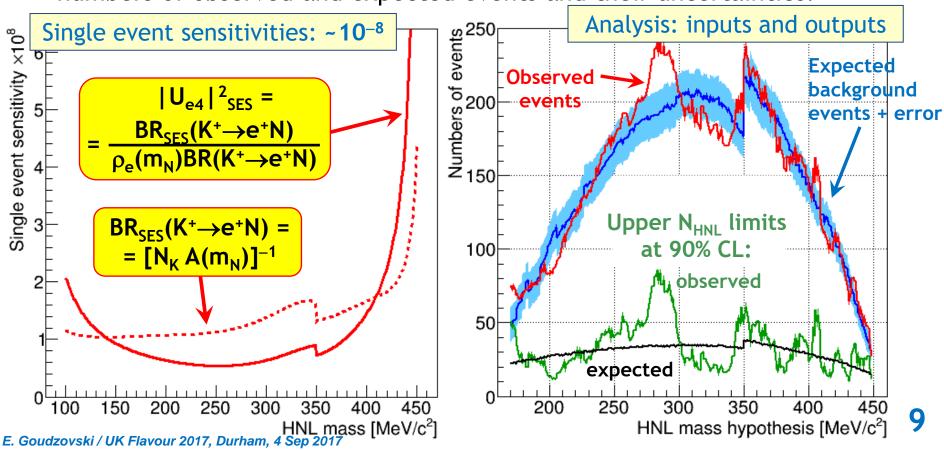
$$N_{$$

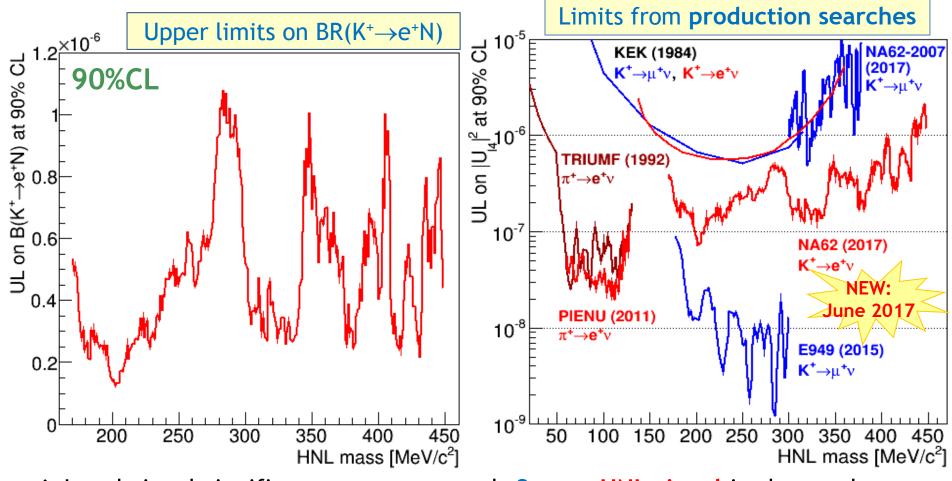



Boyarsky et al., Ann.Rev.Nucl.Part.Sci.59 (2009) 191

E. Goudzovski / UK Flavour 2017, Durham, 4 Sep 2017

$K^+ \rightarrow e^+N$: data sample


- Minimum bias (1% intensity); 11k SPS spills in 2015.
- ❖ K⁺ decays in fiducial volume: $N_K = (3.01 \pm 0.11) \times 10^8$.
- Beam tracker not available: kaon momentum is estimated as the beam average.

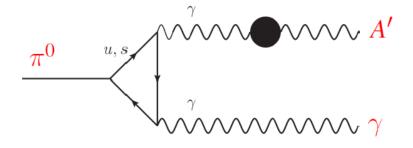


Search for HNL production signal

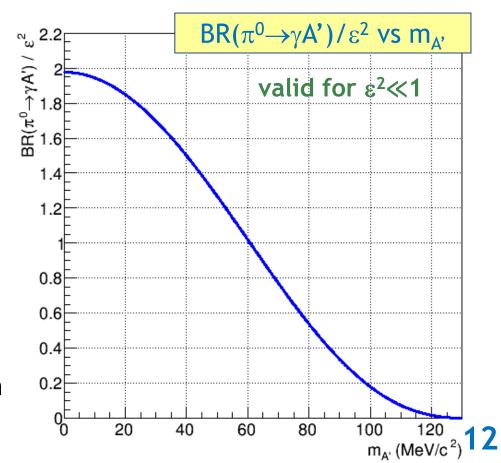
- \Leftrightarrow HNL mass scan: 170 MeV/c² \leq m_N \leq 448 MeV/c², mass step = 1 MeV/c².
- ❖ Signal search window for each mass hypothesis: $\pm 1.5\sigma_{m}$.
- ❖ Background estimate: polynomial fits to mass spectra outside signal window.
- ❖ Background statistical errors estimated with dedicated MC simulation.
- \clubsuit For each m_N , frequentist confidence intervals for N_{HNL} obtained from numbers of observed and expected events and their uncertainties.

HNL production search: results

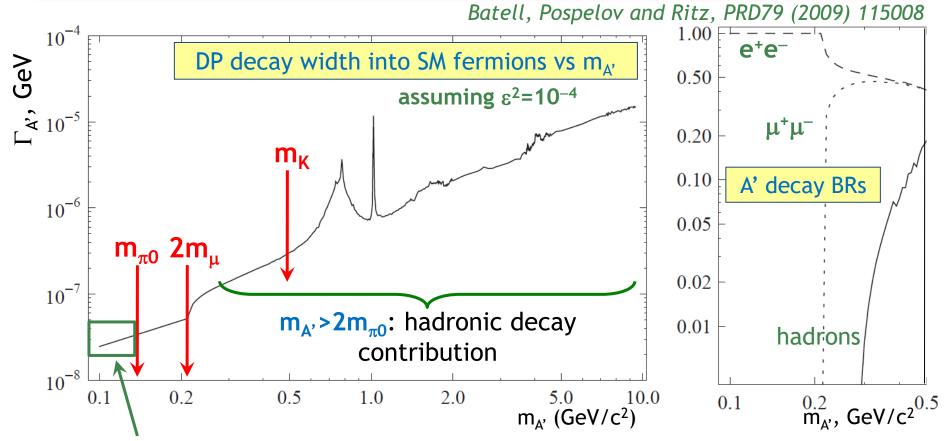
- \diamond Local signal significance never exceeds 3σ : no HNL signal is observed.
- ❖ Reached 10^{-6} – 10^{-7} limits for $|U_{e4}|^2$ in the 170–448 MeV/c² mass range.
- ❖ Major improvement foreseen with high intensity NA62 2016 data.
- New result from $K^+ \rightarrow \mu^+ N$ search with 2015 data is coming later this year. 10


Search for dark photon in the $\pi^0 \rightarrow \gamma A'$ decay

Phys. Lett. B746 (2015) 178; Phys. Lett. B768 (2017) 38


DP production in $\pi^0 \rightarrow \gamma A'$ decay

Batell, Pospelov and Ritz, PRD80 (2009) 095024


$${\cal B}(\pi^0 o\gamma A')=2arepsilon^2\left(1-rac{m_{A'}^2}{m_{\pi^0}^2}
ight)^3{\cal B}(\pi^0 o\gamma\gamma)$$

- Probing the Dark Sector.
- * Two unknown parameters: mass $(m_{A'})$ and mixing (ϵ^2) .
- ightharpoonup Sensitivity to DP for $m_{A'} < m_{\pi 0}$.
- ♦ Loss of sensitivity to $ε^2$ as $m_{A'}$ approaches $m_{π0}$, due to kinematical suppression of the $π^0 → γA'$ decay.

DP decays into SM fermions

Accessible in π^0 decays: assuming decays only into SM fermions,

$$\Gamma_{A'}pprox\Gamma(A' o e^+e^-)=rac{1}{3}lphaarepsilon^2m_{A'}\sqrt{1-rac{4m_e^2}{m_{A'}^2}}\left(1+rac{2m_e^2}{m_{A'}^2}
ight)pproxlphaarepsilon^2m_{A'}/3$$

For $\epsilon^2 > 10^{-7}$ and $m_{A'} > 10$ MeV/ c^2 , prompt A' decay (z vertex resolution ~1 m). Therefore $\pi^0_D \rightarrow e^+e^-\gamma$ is an irreducible background.

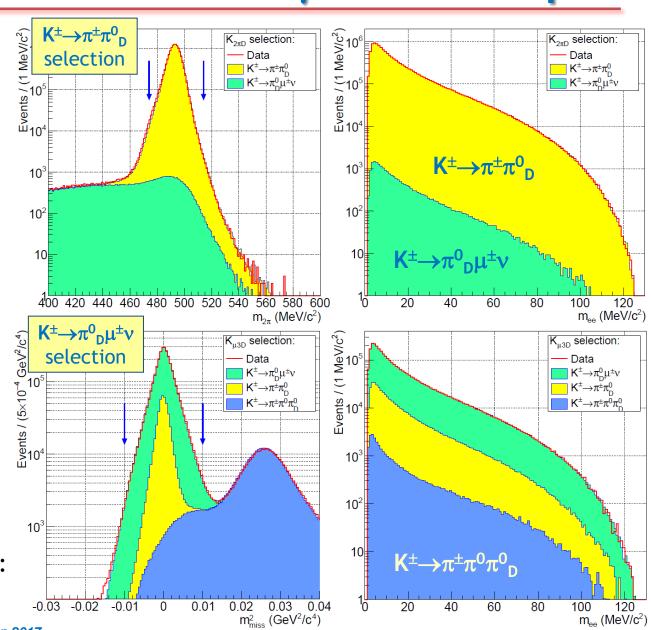
NA48/2: $\pi^0 \rightarrow \gamma e^+ e^-$ sample

Two exclusive selections

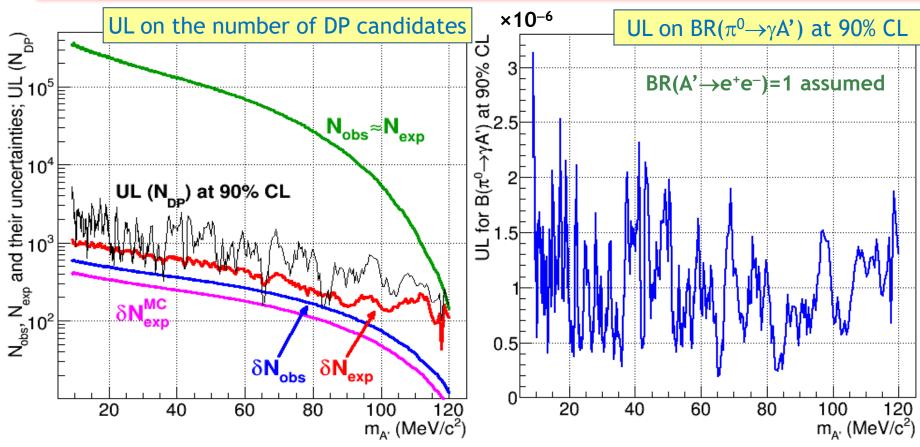
 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D}$ selection:

- $|m_{\pi \text{yee}} m_{\text{K}}| < 20 \text{ MeV/c}^2$;
- $|m_{\gamma ee} m_{\pi 0}| < 8 \text{ MeV/c}^2$;
- no missing momentum.

$$K^{\pm} \rightarrow \pi^{0}_{D} \mu^{\pm} \nu$$
 selection:


- $m_{miss}^2 = (P_K P_\mu P_{\pi 0})^2$ compatible with zero;
- $|m_{\text{vee}} m_{\pi 0}| < 8 \text{ MeV/c}^2$;
- missing total and transverse momentum.

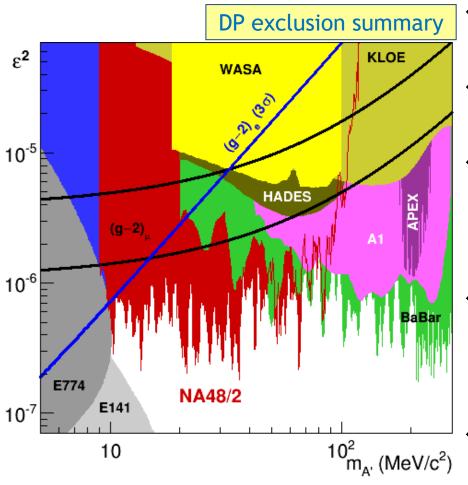
Reconstructed π^0_D decay candidates:


- $N(K_{2\pi D}) = 1.38 \times 10^7$,
- $N(K_{u3D}) = 0.31 \times 10^7$,
- total = 1.69×10^7 .

K[±] decays in fiducial region:

 $N_K = (1.57 \pm 0.05) \times 10^{11}$.

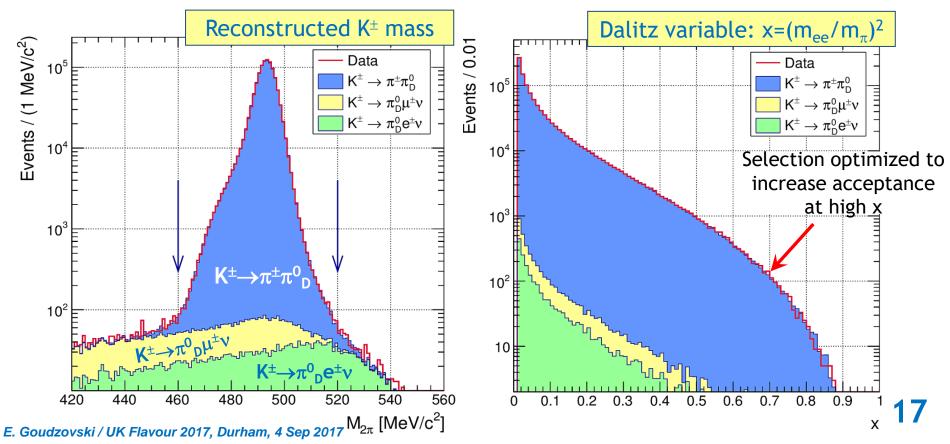
NA48/2: search for DP signal

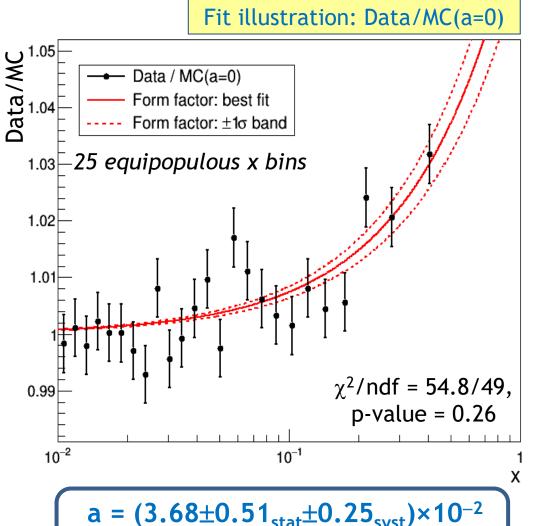

DP mass scan:

- range: 9 MeV/c²≤m_{A'}<120 MeV/c²;
- mass step $0.5\sigma_{\rm m}$, signal window $\pm 1.5\sigma_{\rm m}$;
- DP mass hypotheses tested: 404;
- global fit for the background shape.

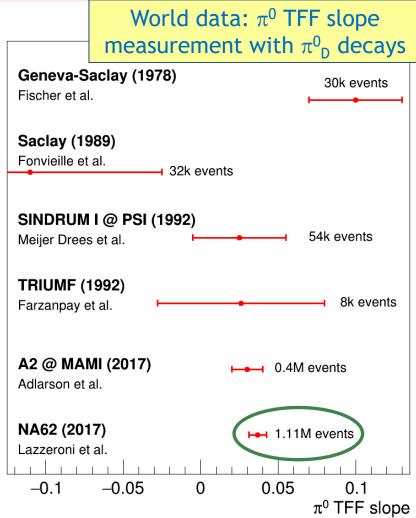
- ✓ Local signal significance never exceeds 3σ: no DP signal observed.
- ✓ The obtained limits are background limited: 2–3 orders of magnitude above single event sensitivity.

NA48/2: dark photon exclusion

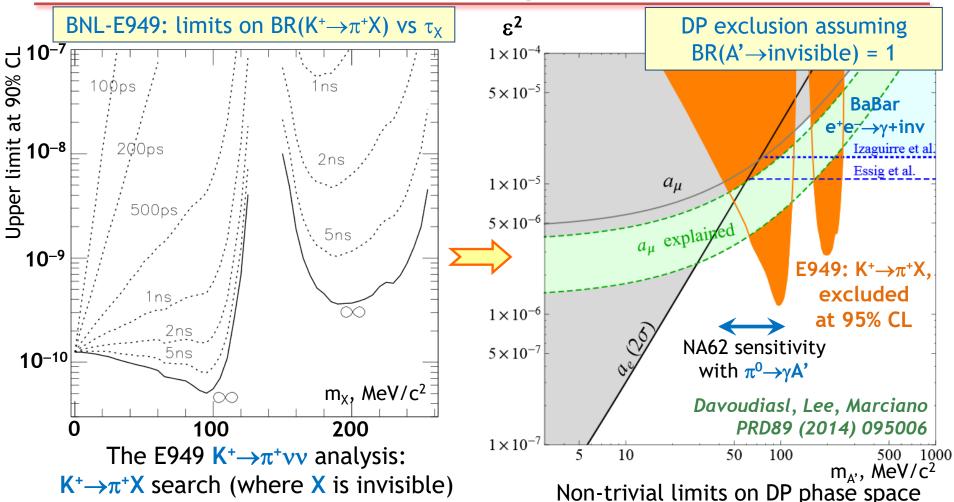

Phys. Lett. B746 (2015) 178


- ❖ Improvement on the existing limits in the $m_{A'}$ range 9–70 MeV/c².
- ❖ Most stringent limits are at low m_{A'} (kinematic suppression is weak).
- Sensitivity limited by irreducible π^0_D background: upper limit on ϵ^2 scales as $\sim (1/N_K)^{1/2}$, modest improvement with larger data samples.
- If DP couples to quarks and decays mainly to SM fermions, it is ruled out as the explanation for the anomalous (g−2)_μ.
- Sensitivity to smaller ε^2 with displaced vertex analysis: to be investigated.

$\pi^0 \rightarrow \gamma e^+ e^- \text{ sample: NA62-R}_K$


- Arr NA62-R_K data: ~2×10¹⁰ K[±] decays in the fiducial decay region.
- * Reconstructed π^0_D decay candidates, $x=(m_{ee}/m_{\pi})^2>0.01$: $N(K_{2\pi D})=1.05\times10^6$.
- Despite ~10 times smaller sample wrt NA48/2, good for spectrum study:
 - ✓ minimum bias trigger: low systematics due to trigger efficiency;
 - ✓ low beam intensity: low systematics due to accidentals.
- ❖ Source of π^0 considered: $K^{\pm} \rightarrow \pi^{\pm} \pi^0$ decay (BR=20.7%).

TFF slope measurement: result



 $a = (3.68\pm0.51_{stat}\pm0.25_{syst})\times10^{-2}$ [Phys. Lett. B768 (2017) 38]

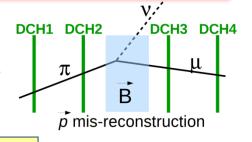
First observation (6.5σ) of non-zero TFF slope in the time-like momentum transfer region. 18

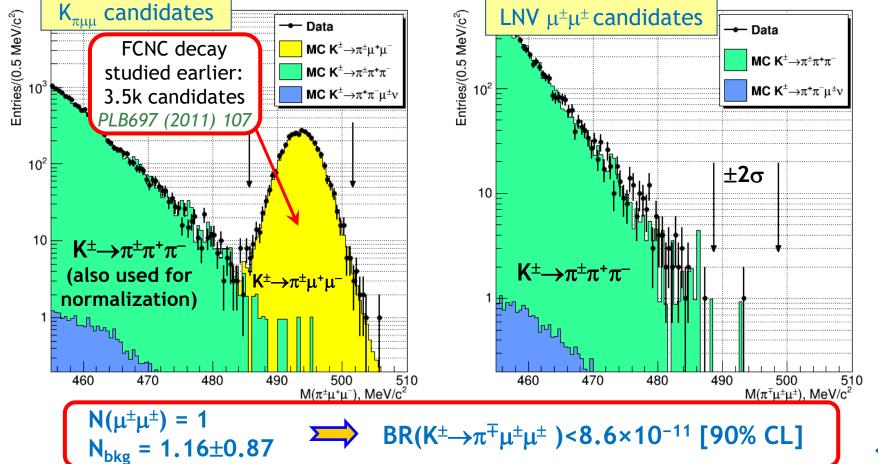
$K^+ \rightarrow \pi^+ A'$ and $\pi^0 \rightarrow \gamma A$, $A' \rightarrow invisible$

BR($\pi^0 \rightarrow \text{invisible}$)<2.7×10⁻⁷ at 90% CL *PRD72 (2005) 091102*

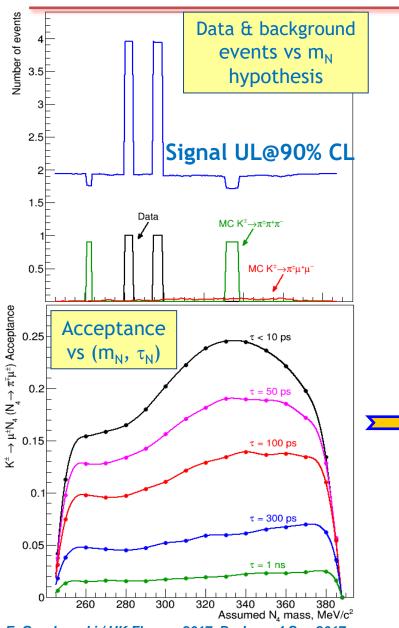
PRD79 (2009) 092004

NA62 improves K⁺ $\rightarrow \gamma$ A' with the whole dataset; non-trivial $\pi^0 \rightarrow \gamma$ A' limits with ~1% of the data

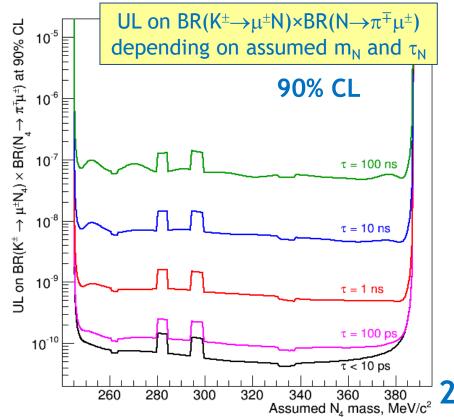

including the $(g-2)_{\mu}$ favoured band, assuming invisible DP decays.


$K^{\pm} \rightarrow \pi \mu \mu$ decays: search for lepton number violation and 2-body resonances

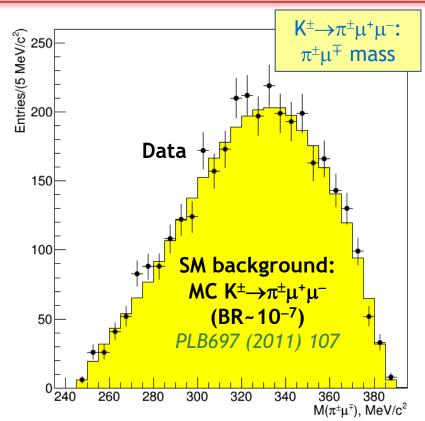
Phys. Lett. B769 (2017) 67


$K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$: lepton number violation

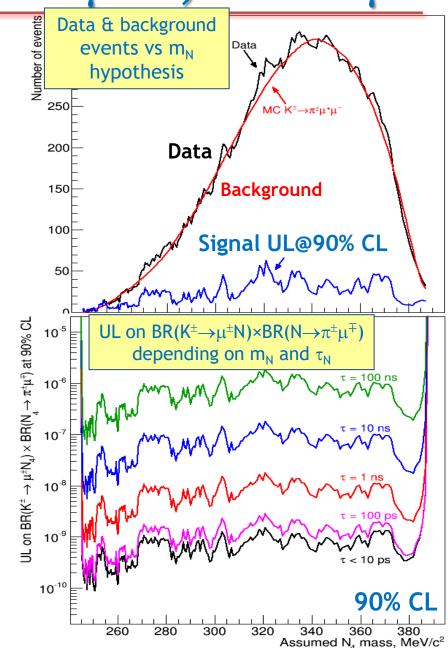
- * NA48/2 data sample. $K^{\pm} \rightarrow \pi \mu \mu$ selection: 3-track vertex; no missing momentum; muon ID (LKr, muon detector).
- Blind analysis: selection optimized with dedicated MC samples.
- ❖ Main background: $K^{\pm} \rightarrow 3\pi^{\pm}$ with $\pi^{\pm} \rightarrow \mu^{\pm} \nu$ decays in flight.
- Muon identification optimized for background reduction.



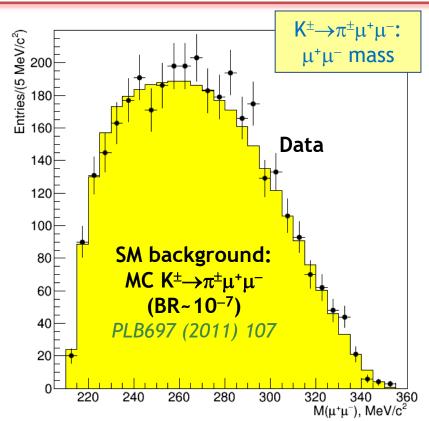
Search for $K^{\pm} \rightarrow \mu^{\pm} N$, $N \rightarrow \pi^{\mp} \mu^{\pm}$



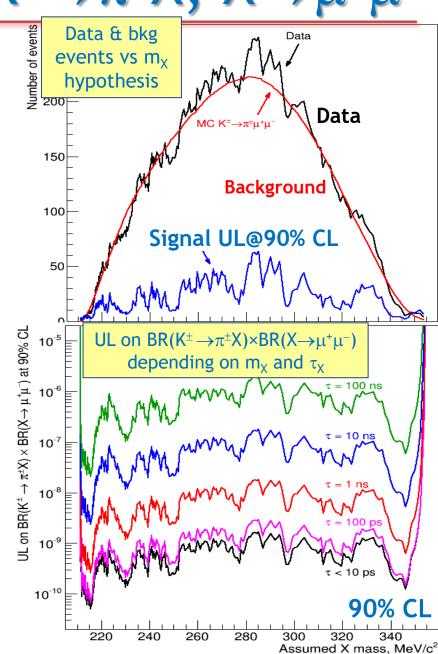
- Interpretation of the LNV result in terms of Majorana neutrino (N) production and decay. [Atre et al., JHEP 0905 (2009) 030]
- \diamondsuit A scan in the parameter space: m_N and τ_N .
- ❖ Due to the 3-track vertex selection constraint, acceptance falls as ~ $1/\tau_N$ for $\tau_N>1$ ns.
- ightharpoonup Limits of ~10⁻¹⁰ set for τ_N <100 ps.



E. Goudzovski / UK Flavour 2017, Durham, 4 Sep 2017

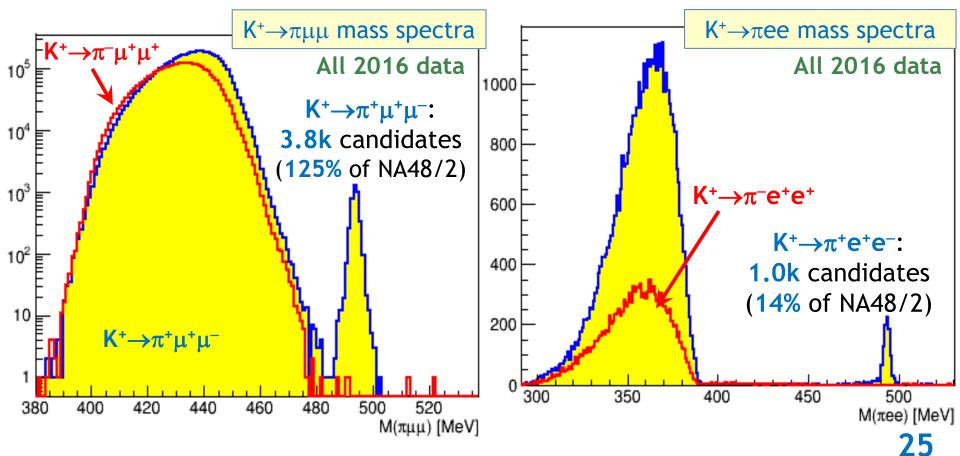

Search for $K^{\pm} \rightarrow \mu^{\pm} N$, $N \rightarrow \pi^{\pm} \mu^{\mp}$

- Search for LN conserving heavy neutrino production and decay.
- Sensitivity limited by background from the FCNC $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ decay.
- \Leftrightarrow Limits of ~10⁻⁹ set for τ_N <100 ps.



Search for $K^{\pm} \rightarrow \pi^{\pm} X$, $X \rightarrow \mu^{+} \mu^{-}$

- ❖ Also background limited; UL~10⁻⁹.
- ❖ This leads to non-trivial limitations on the inflation (χ) phase space: $\chi \rightarrow \mu^+ \mu^-$ decay dominates at $m_{\chi} \sim 300$ MeV/c².

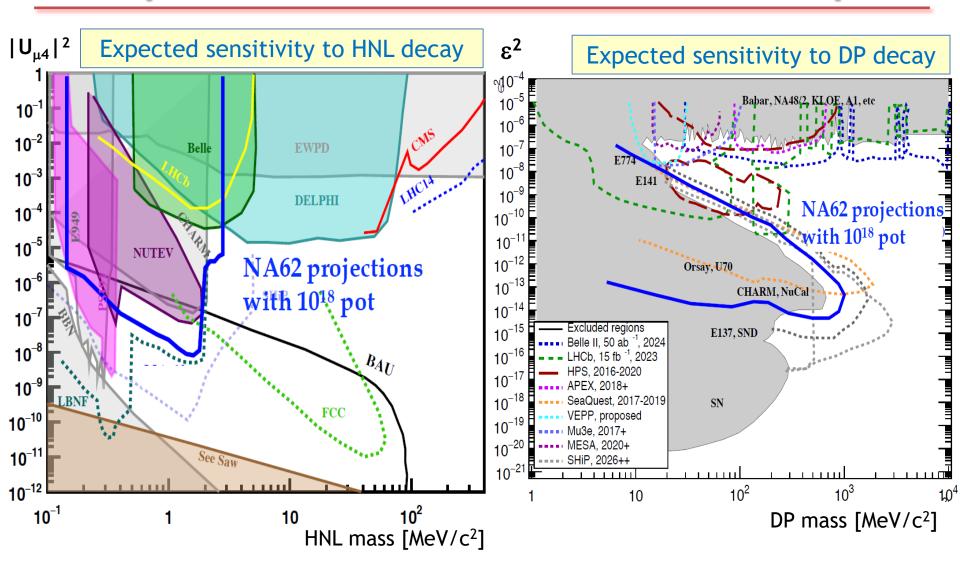

[Shaposhnikov, Tkachev, PLB 639 (2006) 414; Bezrukov, Gorbunov, PLB736 (2014) 494]

Data 2016: 3-track sample

Lepton flavour and number conservation tests:

- ❖ Dedicated trigger streams for 3-track decays with leptons.
- Improved resolution, veto and PID: lower backgrounds wrt NA48/2.
- \clubsuit Expect to improve world limits on LFV/LNV K⁺ and π^0 decays.

NA62 operation in beam dump mode


NA62 beam dump operation

Dump mode: Possibility: 10¹⁸ pot in dump Be target is removed; mode by 2023 (3 months beam is dumped into of dedicated data taking) copper TAXes ($\sim 20\lambda_1$). Quick and reversible. NA62 dump (3.2 m of Cu + Fe) Be target Dark Scalars Light Dark Matter 20 m 80 m 2016 data:

- ❖ 2×10¹⁵ pot with TAX dump;
- ~10¹⁶ pot with Be target dump concurrently with K⁺ beam.

Heavy Neutral Leptons, Dark Photons, Dark scalars, and ALPS can be originated by charm, beauty and photons produced in the interaction of protons with the dump.

Expected sensitivities: examples

For more details, see talk by G.Lanfranchi at EPS HEP 2017

Summary

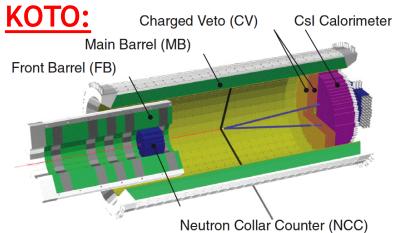
❖ NA62 run 2016–2018:

- ✓ Detector is fully operational since September 2016.
- ✓ Detector performance is close to design parameters.
- ✓ The run is focused on the $K_{\pi\nu\nu}$ measurement (SES~10⁻¹²).
- ✓ Large dataset at 40% of nominal intensity collected in 2016.
- ✓ Currently taking data at 60% of nominal intensity.
- ✓ Programme for NA62 run in 2021–2023 is under discussion.

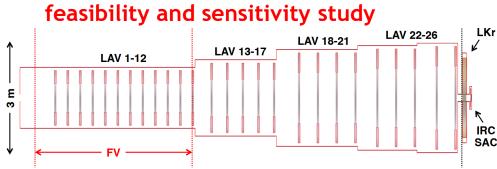
❖ The first (UK-led) NA62 physics result is out:

✓ Search for HNL production in $K^+\rightarrow e^+N$ with minimum bias data; $10^{-6}-10^{-7}$ limits on $|U_{e4}|^2$ in mass range 170-448 MeV/c².

Further results expected soon:


- ✓ $K_{\pi\nu\nu}$ search with the 2016 data; expect ≈1 SM event.
- ✓ Searches for dark photon production in $\pi^0 \rightarrow \gamma A'$ decays (A'→invisible), K⁺→ μ ⁺N, K⁺→e⁺ + invisible; ...

Backup


Kaons at CERN beyond 2024

- ❖ Need to measure both $BR(K^+ \to \pi^+ \nu \nu)$ vs $BR(K_L \to \pi^0 \nu \nu)$: affected differently by NP.
- In the next few years, we expect:
 - ✓ NA62 @ CERN to measure $BR(K^+ \rightarrow \pi^+ \nu \nu)$ to 10%;
 - ✓ KOTO @ J-PARC to observe a few $K_1 \rightarrow \pi^0 vv$ events.
- ❖ A new, possibly multi-purpose, K_L experiment at CERN focussed on $K_L \rightarrow \pi^0 \nu \nu$, with SES~0.5×10⁻¹² is under consideration for Run 4 (2026–2029).

105 m

KLEVER @ CERN: feasibility and sensitive

- ❖ 30 GeV protons (300 kW); <p_{KL}>=2 GeV/c;
- ❖ Proposal: SES=8×10⁻¹² (~4 SM evts) with S/B=1.4 in three years.
- ❖ Short (100h) run in 2013: SES=1.3×10⁻⁸;
- Observed 1 event, expected 0.36; [CKM2014]
- Collected ×20 more data in 2015;
- Intention (no proposal): upgrade to 100 SM evts.

❖ 400 GeV protons; <p_{KL}>~100 GeV/c: complementary approach to KOTO.

241.5 m

- 60 SM events in 5 years with S/B≈1.
- ❖ Protons required: 5×10¹¹ (NA62×10): target area & transfer line upgrade.
- Re-use NA62 infrastructure and parts of detector (LKr calorimeter; muon system).

E. Goudzovski / UK Flavour 2017, Durham, 4 Sep 2017