Charm Physics at LHCb

ШШ

MANCHESTER 1824

The University of Manchester

Mark Williams, on behalf of the LHCb collaboration UK Flavour Meeting, IPPP, Durham 4 September 2017

Charm at LHCb: Why?

A charm factory:

- Huge samples of charm hadrons
- Precision capabilities (vertexing, tracking, particle ID)

A fruitful field:

- Charm mixing: is mass difference (x) non-zero? Do parameters agree with SM?
- Any CP violation? (direct or indirect) none yet observed.
- Rare charm decays: many limits are very old low-hanging fruit for NP searches

LHCD THCD

Charmed particles produced copiously at LHCb

$$\sigma(pp \to D^0 X) = 2072 \pm 2 \pm 124 \,\mu b$$

$$\sigma(pp \to D^+ X) = 834 \pm 2 \pm 78 \,\mu b$$

$$\sigma(pp \to D_s^+ X) = 353 \pm 9 \pm 76 \,\mu b$$

$$\sigma(pp \to D^{*+} X) = 784 \pm 4 \pm 87 \,\mu b$$

JHEP 05 (2017) 074 ARXIV:1510.01707

(13 TeV, 2 < η < 4.5, 0 < pT < 8 GeV/c)

Charmed particles produced copiously at LHCb

$$\sigma(pp \to D^0 X) = 2072 \pm 2 \pm 124 \,\mu b$$

$$\sigma(pp \to D^+ X) = 834 \pm 2 \pm 78 \,\mu b$$

$$\sigma(pp \to D_s^+ X) = 353 \pm 9 \pm 76 \,\mu b$$

$$\sigma(pp \to D^{*+} X) = 784 \pm 4 \pm 87 \,\mu b$$

JHEP 05 (2017) 074 ARXIV:1510.01707 (13 TeV, 2 < η < 4.5, 0 < pT < 8 GeV/c)

⇒ In 2017:

>5% of all bunch crossings produce a charm meson within LHCb acceptance

How do we deal with this abundance of riches?!

A: Novel trigger strategy – the 'Turbo' approach

• Full event reconstruction used in trigger decision (with real-time detector calibration and alignment)

- Full event reconstruction used in trigger decision (with real-time detector calibration and alignment)
- Write out events in ready-to-analyse format ⇒ no need for additional offline processing

- Full event reconstruction used in trigger decision (with real-time detector calibration and alignment)
- Write out events in ready-to-analyse format ⇒ no need for additional offline processing
- Only save what we need **smaller event sizes** ⇒ **higher rate to disk**

- Full event reconstruction used in trigger decision (with real-time detector calibration and alignment)
- Write out events in ready-to-analyse format ⇒ no need for additional offline processing
- Only save what we need smaller event sizes ⇒ higher rate to disk
- Flexible approach custom trigger line for each channel ⇒ different information can be stored for different analysis needs

- Full event reconstruction used in trigger decision (with real-time detector calibration and alignment)
- Write out events in ready-to-analyse format ⇒ no need for additional offline processing
- Only save what we need smaller event sizes ⇒ higher rate to disk
- Flexible approach custom trigger line for each channel ⇒ different information can be stored for different analysis needs

A: Novel simulation and analysis tools

Monte Carlo sample sizes starting to limit precision on high-statistics analyses

CPU-expensive

A: Novel simulation and analysis tools

Monte Carlo sample sizes starting to limit precision on high-statistics analyses

CPU-expensive

A: Novel simulation and analysis tools

Monte Carlo sample sizes starting to limit precision on high-statistics analyses

CPU-expensive

A: Novel simulation and analysis tools

Monte Carlo sample sizes starting to limit precision on high-statistics analyses

CPU-expensive

A: Complementary samples

Lifetime-biasing trigger

 \Rightarrow must apply correction in analysis.

Narrow reconstructed D* peak ⇒ High signal purity

A: Complementary samples

Lifetime-biasing trigger

 \Rightarrow must apply correction in analysis.

Narrow reconstructed D* peak ⇒ High signal purity

Lifetime unbiased trigger selection

No D^{*±} mass peak to cut on ⇒ higher backgrounds

A: Complementary samples

Lifetime-biasing trigger

 \Rightarrow must apply correction in analysis.

Narrow reconstructed D* peak ⇒ High signal purity

Lifetime unbiased trigger selection

No D^{*±} mass peak to cut on ⇒ higher backgrounds

+ Double-tagged: $(B^0 \rightarrow \mu^- \nu X)D^{*+} \rightarrow \pi^+ D^0$ Best of both worlds (but lower yields)

400

200

2600

2800

3000

Charm at LHCb: What?

D*_{s1}(2700)⁺

D*_s(2860)+

 $D_{s1}(3040)^{+}$

 $^{2600\ 2800\ 3000\ 3200\ 3400}$ D*_{s2}(2573)+

3400

3200

 $m(D^{*+}K_{a}^{0})$ [MeV]

Charm physics at LHCb

2200

2000

1800

Ds

D*

D_{s0}

D s1

observed

D' s1

4 September 2017

Unexpected D_{s1} states?

D_{s2}

Charm at LHCb: What?

Three main analysis strands:

- 1. Production and decay properties
- 2. Rare Charm Decays

Charm at LHCb: What?

Three main analysis strands:

- 1. Production and decay properties
- 2. Rare Charm Decays
- 3. Mixing and CP violation

4 September 2017

Spectroscopy – See talk by P. Spradlin

- First observation of double-charmed baryon E_{cc}⁺⁺
- Mass inconsistent with SELEX Ξ_{cc}^+ state
- Long-lived (full lifetime analysis ongoing)

Charm lifetimes

Reconstruct $\mathbf{B}_{s}^{0} \rightarrow \mathbf{D}_{s}^{(*)-} \mu^{+} \mathbf{v}_{\mu} \qquad \mathbf{B}^{0} \rightarrow \mathbf{D}^{(*)-} \mu^{+} \mathbf{v}_{\mu}$ in same final state $K^{+}K^{-}\pi^{-}\mu^{+}$

Use known B^0 and D^- lifetimes as references, to determine B_s^0 and D_s^- lifetimes:

 $\tau(D_s^{-}) = 0.5064 \pm 0.0030 \pm 0.0017 \pm 0.0017 \text{ ps}$ (stat) (syst) [$\tau(D^{-})$]

WA: 0.5000 ± 0.0070 ps

Charm physics at LHCb

4 September 2017

Charm lifetimes

Reconstruct $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$ $B^0 \rightarrow D^{(*)-} \mu^+ \nu_{\mu}$ in same final state K⁺K⁻ $\pi^-\mu^+$

Use known B^0 and D^- lifetimes as references, to determine B_s^0 and D_s^- lifetimes:

 $\tau(D_s^{-}) = 0.5064 \pm 0.0030 \pm 0.0017 \pm 0.0017 \text{ ps}$ (stat) (syst) [$\tau(D^{-})$]

WA: 0.5000 ± 0.0070 ps

- Now developing this method for other time-dependent analyses (y_{CP})
- New decay-time unbiased triggers added for Run 2 – using these in parallel to measure charm lifetimes

Charm physics at LHCb

Λ_c^+ Branching Ratios

Until recently, Λ_c^+ branching fractions poorly known

Hot-off-the-press LHCb analysis measures ratios of decay rates for CF, SCS, and DCS modes:

Use both μ -tagged sample (shown) and π -tagged sample

Charm physics at LHCb

4 September 2017

In preparation LHCb-PAPER-2017-026

Λ_c^+ Branching Ratios

Results consistent between samples

μ -tagged

$$\begin{aligned} \frac{\mathcal{B}(\Lambda_c^+ \to pK^-K^+)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} &= (1.70 \pm 0.03(\text{stat}) \pm 0.03(\text{syst})) \ \%, \\ \frac{\mathcal{B}(\Lambda_c^+ \to p\pi^-\pi^+)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} &= (7.44 \pm 0.08(\text{stat}) \pm 0.18(\text{syst})) \ \%, \\ \frac{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} &= (0.165 \pm 0.015(\text{stat}) \pm 0.005(\text{syst})) \ \%, \end{aligned}$$
Significant Signifi

Significantly lower than the naive expectation

[Lipkin, Nucl. Phys. Proc. Suppl. 115 (2003) 117

π -tagged

$$\begin{aligned} &\frac{\mathcal{B}(\Lambda_c^+ \to pK^-K^+)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (1.68 \pm 0.14 (\text{stat}) \pm 0.11 (\text{syst})) \ \%, \\ &\frac{\mathcal{B}(\Lambda_c^+ \to p\pi^-\pi^+)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (7.86 \pm 0.40 (\text{stat}) \pm 0.36 (\text{syst})) \ \%, \end{aligned}$$

In preparation LHCb-PAPER-2017-026

• Next step: extend to more challenging modes with electrons / photons

Baryon + Lepton

number violation

Some discrimination by splitting into $m(\mu\mu)$ regions:

- Low-mass: m(μμ) < 525 MeV
- η-region: 525-565
- ρ/ω -region: 565-950 (or until kinematic limit for KKµµ case)
- φ-region:
- High-mass:

β only for ππμμ

Charm physics at LHCb Mark

950-1100

>1100

27

Run 1 data (2012), use π -tag to improve purity Observe significant peaks:

- π⁺π⁻μ⁺μ⁻ : low-mass, ρ/ω, φ
- $K^+K^-\mu^+\mu^-$: low-mass, ρ/ω

arXiv:1707.08377 Submitted to PRL

4 September 2017

Observation of D⁰ \rightarrow h⁺h⁻µ⁺µ⁻

Branching ratios calculated using $D^0 \rightarrow K^-\pi^+[\mu^+\mu^-]_{\rho/\omega}$ as reference channel

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) =$ $(9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$

 $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) =$ $(1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}$

Rarest charm-hadron decays ever observed.

Four-body decay : can later use angular analysis to disentangle short/longdistance components

$D^0 o \pi^+ \pi^- \mu^+ \mu^-$		
$m(\mu^+\mu^-)$ region	$[MeV/c^2]$	${\cal B} [10^{-8}]$
Low mass	< 525	$7.8 \pm 1.9 \pm 0.5 \pm 0.8$
η	525 - 565	< 2.4(2.8)
$ ho^0/\omega$	565 - 950	$40.6 \pm 3.3 \pm 2.1 \pm 4.1$
ϕ	950 - 1100	$45.4 \pm 2.9 \pm 2.5 \pm 4.5$
High mass	> 1100	< 2.8 (3.3)
$D^0 \to K^+ K^- \mu^+ \mu^-$		
$m(\mu^+\mu^-)$ region	$[MeV/c^2]$	${\cal B} [10^{-8}]$
Low mass	< 525	$2.6 \pm 1.2 \pm 0.2 \pm 0.3$
η	525 - 565	< 0.7(0.8)
ρ^0/ω	> 565	$12.0 \pm 2.3 \pm 0.7 \pm 1.2$

arXiv:1707.08377 Submitted to PRL

Mixing and CP Violation

LHCD

Measuring individual CP asymmetries more challenging...

Main challenge: Disentangle CP asymmetry from detector and production asymmetries $P^0 \xrightarrow{K^-} \xrightarrow{$

Solution:

Over-constrain the system using multiple control channels

34

Result:

PLB 767 (2017) 177 arXiv:1610.09476

Complete set of Run 1 measurements in K⁺K⁻ and $\pi^+\pi^-$ No indication of any CP violation

Result:

PLB 767 (2017) 177 arXiv:1610.09476

Complete set of Run 1 measurements in K⁺K⁻ and $\pi^+\pi^-$ No indication of any CP violation

Local CP violation in $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

Energy test method : Compute test statistic based on separation of same- and opposite-flavour D⁰ mesons across **5D** phase space

Compare to distribution from tag-randomised ensemble of pseudo-experiments

Previously used in LHCb D⁰→π⁺π⁻π⁰ analysis PLB 740 (2015) 158 arXiv:1410.4170

Electric charge analogy:

+q and –q evenly distributed ⇒ potential energy E = 0

Local CP violation in $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

Energy test method : Compute test statistic based on separation of same- and opposite-flavour D⁰ mesons across **5D** phase space

Compare to distribution from tag-randomised ensemble of pseudo-experiments

Previously used in LHCb D⁰→π⁺π⁻π⁰ analysis PLB 740 (2015) 158 arXiv:1410.4170

Electric charge analogy:

+q and –q distributions **different** ⇒ potential energy **E** > **0**

Local CP violation in $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

Energy test method : Compute test statistic based on separation of same- and opposite-flavour D⁰ mesons across **5D** phase space

Compare to distribution from tag-randomised ensemble of pseudo-experiments

Previously used in LHCb D⁰→π⁺π⁻π⁰ analysis PLB 740 (2015) 158 arXiv:1410.4170

Local CP violation in $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$

Energy test method : Compute test statistic based on separation of same- and opposite-flavour D⁰ mesons across 5D phase space

Compare to distribution from tag-randomised ensemble of pseudo-experiments

Perform both P-odd and P-even tests (by splitting samples according to triple product C_T)

P-even CPV: p-value = (4.3 ± 0.6) % P-odd CPV: p-value = (0.6 ± 0.2) %

> PLB 769 (2017) 345 arXiv:1612.03207

Local CP violation in $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$

Energy test method : Compute test statistic based on separation of same- and opposite-flavour D⁰ mesons across 5D phase space

Compare to distribution from tag-randomised ensemble of pseudo-experiments

Can find regions with largest contributions ⇒ need amplitude analysis for complete interpretation

> PLB 769 (2017) 345 arXiv:1612.03207

Local CP violation in $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$

Energy test method : Compute test statistic based on separation of same- and opposite-flavour D⁰ mesons across 5D phase space

Compare to distribution from tag-randomised ensemble of pseudo-experiments

Wrong-sign K3π:

- + Potentially a very sensitive channel to determine mixing and CPV parameters
- But experimentally challenging 5D phase space

First measurement: simplify by integrating over phase space (lose sensitivity)

Assume no CPV in mixing or decay.

8.2σ evidence for mixing (first time in this channel)

PRL 116 (2016) 241801 arXiv:1602.07224

Charm physics at LHCb

Wrong-sign K3π:

- + Potentially a very sensitive channel to determine mixing and CPV parameters
- But experimentally challenging 5D phase space

First measurement: simplify by integrating over phase space (lose sensitivity)

Assume no CPV in mixing or decay.

8.2o evidence for mixing (first time in this channel)

Also constrain (x,y) to WA to measure γ inputs

 $(\mathsf{R}_{\mathsf{D}}^{\mathsf{K}3\pi}, \delta_{\mathsf{D}}^{\mathsf{K}3\pi})$ constraints from mixingconstrained fit – reduces overall WA uncertainties by ~50%.

PRL 116 (2016) 24: arXiv:1602.07224

Charm physics at LHCb

Wrong-sign K3π:

- + Potentially a very sensitive channel to determine mixing and CPV parameters
- But experimentally challenging 5D phase space

First measurement: simplify by integrating over phase space (lose sensitivity)

š 150

100

50

0

0.2

0.4

0.6

Also constrain (x,y) to W

Assume no CPV in mixing

8.2 σ evidence for mixing

 $(R_D^{K3\pi}, \delta_D^{K3\pi})$ constraints from mixingconstrained fit – reduces overall WA uncertainties by ~50%.

Charm physics at LHCb

4 September 2017

PRL 116 (2016) 241801

arXiv:1602.07224

0.8

Golden Mode: $D^0 \rightarrow K_s^0 \pi^+\pi^-$

Measure (x, y, q/p, ϕ) simultaneously

Mass splitting parameter **x** still not well constrained experimentally – consistent with zero (i.e. no oscillations)

 $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ is our best bet to constrain it

Single measurement from LHCb using 1fb⁻¹ of Run 1 data

- π-tagged
- model independent

$$x = (-0.86 \pm 0.53 \pm 0.17) \times 10^{-2}$$

$$y = (+0.03 \pm 0.46 \pm 0.13) \times 10^{-2}$$

JHEP 04 (2016) 033 arXiv:1510.01664

Golden Mode: $D^0 \rightarrow K_s^0 \pi^+\pi^-$

Measure (x, y, q/p, ϕ) simultaneously

Complex analysis – attack from as many angles as possible – updates in progress!

Model dependent, μ -tagged and double-tagged samples

Golden Mode: $D^0 \rightarrow K_s^0 \pi^+\pi^-$

Measure (x, y, q/p, ϕ) simultaneously

Complex analysis – attack from as many angles as possible – **updates in progress!**

Model dependent, μ -tagged and double-tagged samples

Model independent approach – compare yields in each bin with those in the mirror image (bin-flip method)

- Lose some sensitivity to (x,y)
- + Cancel decay-time acceptance effects

For small x,y, CP asymmetry of D⁰ decay rates are 1st order in time:

$$A_{CP}(t) = \frac{\Gamma(D^{0}(t) \to f) - \Gamma(\overline{D}^{0}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\overline{D}^{0}(t) \to f)} \simeq a_{d} - A_{\Gamma} \frac{t}{\tau_{D}}$$

 \Rightarrow Extract A_{Γ} by fitting $A_{CP}(t)$ to straight line

- Two complementary methods ("binned" vs "unbinned")
- Run 1, π-tagged sample
- $D^0 \rightarrow K^-\pi^+$ used to validate methods

CPV in mixing/interference $A_{\Gamma} = f(x, y, q, p)$

CPV in mixing: A_Γ(KK), A_Γ(ππ)

For small x,y, CP asymmetry of D⁰ decay rates are 1st order in time:

 \Rightarrow Extract A_{Γ} by fitting $A_{CP}(t)$ to straight line

- Two complementary methods ("binned" vs "unbinned")
- Run 1, π-tagged sample
- $D^0 \rightarrow K^-\pi^+$ used to validate methods

Main challenge:

$$A_{CP}(t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(\overline{D}{}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\overline{D}{}^0(t) \to f)} \simeq a_d - A_{\Gamma} \frac{t}{\tau_D}$$

CPV in decay

CPV in mixing/interference $A_{\Gamma} = f(x, y, q, p)$

 \Rightarrow biased A_r measurement

Unbinned Results (8 TeV only):

 $A_{\Gamma}(K^{+}K^{-}) = (-0.03 \pm 0.46 \pm 0.10) \times 10^{-3}$ $A_{\Gamma}(\pi^{+}\pi^{-}) = (+0.03 \pm 0.79 \pm 0.16) \times 10^{-3}$

Combine with published 7 TeV result to determine Run 1 average (KK + $\pi\pi$):

 $A_{\Gamma} = (-0.07 \pm 0.34) \times 10^{-3}$

 $A_{\Gamma}(K^{+}K^{-}) = (-0.03 \pm 0.46 \pm 0.10) \times 10^{-3}$ $A_{\Gamma}(\pi^{+}\pi^{-}) = (+0.03 \pm 0.79 \pm 0.16) \times 10^{-3}$

Combine with published 7 TeV result to determine Run 1 average (KK + $\pi\pi$):

 $A_{\Gamma} = (-0.07 \pm 0.34) \times 10^{-3}$

Binned Results (7+8 TeV):

$$\begin{split} \mathsf{A}_{\Gamma}(\mathsf{K}^{+}\mathsf{K}^{-}) &= (-0.30 \pm 0.32 \pm 0.14) \times 10^{-3} \\ \mathsf{A}_{\Gamma}(\pi^{+}\pi^{-}) &= (+0.46 \pm 0.58 \pm 0.16) \times 10^{-3} \end{split}$$

 $A_{\Gamma} = (-0.13 \pm 0.30) \times 10^{-3}$

Unbinned Results (8 TeV only):

 $A_{\Gamma}(K^{+}K^{-}) = (-0.03 \pm 0.46 \pm 0.10) \times 10^{-3}$ $A_{\Gamma}(\pi^{+}\pi^{-}) = (+0.03 \pm 0.79 \pm 0.16) \times 10^{-3}$

Combine with published 7 TeV result to determine Run 1 average (KK + $\pi\pi$):

 $A_{\Gamma} = (-0.07 \pm 0.34) \times 10^{-3}$

Binned Results (7+8 TeV):

 $\begin{aligned} \mathsf{A}_{\Gamma}(\mathsf{K}^{+}\mathsf{K}^{-}) &= (-0.30 \pm 0.32 \pm 0.14) \times 10^{-3} \\ \mathsf{A}_{\Gamma}(\pi^{+}\pi^{-}) &= (+0.46 \pm 0.58 \pm 0.16) \times 10^{-3} \end{aligned}$

Run 1 KK+ππ average:

Run 1 µ-tagged results:

$$A_{\Gamma}(K^{+}K^{-}) = (-1.34 \pm 0.77 ^{+0.26}_{-0.34}) \times 10^{-3}$$
$$A_{\Gamma}(\pi^{+}\pi^{-}) = (-0.92 \pm 1.45 ^{+0.25}_{-0.33}) \times 10^{-3}$$
$$JHEP \ 04 \ (2015) \ 043$$
$$arXiv:1501.06777$$

Full Run 1 average: **A**_r = -0.29 ± 0.28 × 10⁻³

- Two methods consistent
- No evidence for CPV
- Most precise measurements of CPV in charm system ever made
- Still statistically limited

PRL 118 (2017) 261803 arXiv:1702.06490

Rich and diverse programme of charm physics at LHCb

- New Ω_c^{0**} states:
- Ξ_{cc}^{++} discovery:
- D_s⁻ lifetime:
- Λ_c^+ branching ratios:
- $D^0 \rightarrow h^+h^-\mu^+\mu^-$ observation:
- $A_{CP}(D^0 \rightarrow K^+K^-)$:
- A_{CP}(D_(s)[±]→η′π[±]):
- $D^0 \rightarrow 4\pi$ energy test:
- Wrong-sign $D^0 \rightarrow K\pi$:
- Wrong-sign $D^0 \rightarrow K3\pi$:
- $D^0 \rightarrow K_s^0 \pi^+ \pi^-$:
- Indirect CPV (A_Γ):

PRL 118 (**2017**)182001 PRL 111 (2017) 180001 Submitted to PRL In preparation Submitted to PRL PLB 767 (2017) 177 PLB 771 (2017) 21 PLB 769 (2017) 345 PRD 95 (2017) 052004 PRL 116 **(2016)** 241801 JHEP 04 (2016) 033 PRL 118 (2017) 261803 arXiv:1703.04639 arXiv:1707.01621 arXiv:1705.03475 LHCb-PAPER-2017-026 arXiv:1707.08377 arXiv:1610.09476 arXiv:1701.01871 arXiv:1612.03207 arXiv:1611.06143 arXiv:1602.07224 arXiv:1510.01664 arXiv:1702.06490

Rich and diverse programme of charm physics at LHCb

- Era of precision measurements... ...but still new states to discover!
- No evidence for any CP violation so far
- Measurements still statistically limited
- Many systematics also scale inversely with sample size (control sample reweighting, background modelling, ...)

Summary and Outlook

Rich and diverse programme of charm physics at LHCb

- Era of precision measurements... ...but still new states to discover!
- No evidence for any CP violation so far
- Measurements still statistically limited
- Many systematics also scale inversely with sample size (control sample reweighting, background modelling, ...)
 <u>LHCb-PUB-2013</u>

Run 2 and beyond offers significant opportunity for charm physics

- Run 2: ×2 yield from energy, + trigger gains,
 + new lifetime unbiased hadronic triggers
- ≥Run 3: Upgraded detector full event reconstruction at all trigger levels, & better vertex resolution
- Much more to come! Stay tuned.

LHCb

Measure **raw asymmetries** in yields of process X:

$$A_{raw}(X) = \frac{N(X) - N(\overline{X})}{N(X) + N(\overline{X})}$$

= sum of CP asymmetry and detector asymmetries

Detector asymmetries:

Magnet sweeps opposite-charged particles in different directions (detector not perfectly symmetric)

LHCb

Measure **raw asymmetries** in yields of process X:

$$A_{raw}(X) = \frac{N(X) - N(\overline{X})}{N(X) + N(\overline{X})}$$

= sum of CP asymmetry and detector asymmetries

Detector asymmetries:

Magnet sweeps opposite-charged particles in different directions (detector not perfectly symmetric)

Material interactions: different for particles/antiparticles

 \Rightarrow

Chin. Phys. C 38 (2014) 090001

Charm physics at LHCb

Measure **raw asymmetries** in yields of process X:

$$A_{raw}(X) = \frac{N(X) - N(\overline{X})}{N(X) + N(\overline{X})}$$

= sum of CP asymmetry and detector asymmetries

Detector asymmetries:

Magnet sweeps opposite-charged particles in different directions (detector not perfectly symmetric)

Material interactions: different for particles/antiparticles

Regularly reverse polarity

Fiducial cuts to remove most asymmetric regions

Charm physics at LHCb Mark Williams 4 September 2017

Measure **raw asymmetries** in yields of process X:

$$A_{raw}(X) = \frac{N(X) - N(\overline{X})}{N(X) + N(\overline{X})}$$

= sum of CP asymmetry and detector asymmetries

Detector asymmetries:

Magnet sweeps opposite-charged particles in different directions (detector not perfectly symmetric)

Material interactions: different for particles/antiparticles

Regularly reverse polarity

Fiducial cuts to remove most asymmetric regions

Irreducible: measure in control channels

Depend on kinematics – ensure matching with signal sample (reweighting, or binned correction)

Charm physics at LHCb

- 5 clear peaks observed (>10 sigma)
- Broad excess at ~3200 MeV : could be superposition of several states
- Peaking feed-down backgrounds from $\Omega_c(X)^0 \rightarrow \Xi'_c^+ (\rightarrow \Xi_c^+ \gamma) K^-$ with missing γ

Double charmed baryons

Long-standing puzzle...

Previous SELEX observations of Ξ_{cc}^+ (*ccd*) with:

- $\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}$ (6.3 σ)
- $\Xi_{cc}^{+} \rightarrow pD^{+}K^{-}$ (4.8 σ)

Unexpected findings:

- τ(Ξ_{cc}⁺) < 33fs @ 90% CL
- ~20% of all Λ_c^+ from this Ξ_{cc}^+ decay

Not seen by other experiments, but unique collision environment means state cannot be ruled out.

Double charmed baryons

New LHCb results searches for doublycharged isospin partner (ccu) of claimed SELEX state

Significant excess above smooth background

No peaking in wrong-sign or sideband samples

New LHCb results searches for doublycharged isospin partner (ccu) of claimed SELEX state

UML fit:

> **12** significance

 $M(\Xi_{cc}^{++}) = 3621.40 \pm 0.72 \pm 0.27 \pm 0.14 \text{ MeV/c}^{2}$ (stat) (syst) (Λ_{c}^{+})

>100 MeV from SELEX peak (3519 \pm 2 MeV) – disfavours prior Ξ_{cc}^+ hypothesis

Double charmed baryons

New LHCb results searches for doublycharged isospin partner (ccu) of claimed SELEX state

Significant peak in LHCb Run 1 (8 TeV) sample.

Double charmed baryons

New LHCb results searches for doublycharged isospin partner (ccu) of claimed SELEX state

Significant peak in LHCb Run 1 (8 TeV) sample.

Peak still present for **highly-significant** decay-time region.
Production and decay properties

Double charmed baryons

New LHCb results searches for doublycharged isospin partner (ccu) of claimed SELEX state

Next steps:

- Full lifetime measurement
- Ξ_{cc}^+ (ccd)
- Ω_{cc}⁺ states (ccs)
- More decay channels (~30 new trigger conditions for 2017 running)