$B\!\rightarrow\mu^+\mu^-$ and tests of Lepton Flavour Universality

H. V. Cliff

Cavendish Laboratory University of Cambridge

UK Flavour Physics Meeting, 5 September 2017

Talk will focus on recent rare decay results from LHCb and future prospects:

- $B^0_s \! \rightarrow \mu^+ \mu^-$ branching fraction and effective lifetime
- Tests of lepton flavour universality (LFU):
 - Motivation: $R\left(K
 ight)$, $R\left(D^{*}
 ight)$
 - New measurements: $R(K^{*0})$
 - Future measurements: $R\left(\phi
 ight)$, $R\left(K
 ight)$, $R\left(K^{0}_{\mathrm{S}}
 ight)$...

See also Kostas's earlier talk on $b\to sll$ and Mika's talk on semileptonic B decays in the next session.

$$B \! \rightarrow \mu^+ \mu^-$$

<ロ > < 部 > < 言 > < 言 > こ の Q (~ 3/23

$B \rightarrow \mu^+ \mu^-$ branching fractions

Great place to look for new physics:

- Low branching fraction due to loop mediation and helicity suppression
- Precise theoretical predictions: $\mathcal{B} \left(B_s^0 \to \mu^+ \mu^- \right) = 3.65 \pm 0.23 \times 10^{-9}$ $\mathcal{B} \left(B^0 \to \mu^+ \mu^- \right) = 1.06 \pm 0.09 \times 10^{-10}$ [C. Bobeth *et al.*, PRL 112 (2014) 101801]

Previously observed by combined $\mathsf{CMS} + \mathsf{LHCb}$ analysis.

[CMS and LHCb collaborations, Nature 522 (2015) 68]

Sensitive to extended Higgs sector.

4/23

$B \rightarrow \mu^+ \mu^-$ branching fractions

Recently published updated measurement with 3.0 fb^{-1} Run 1 data and 1.4 fb^{-1} Run 2 data. Improved version of previous LHCb analysis:

stin 0.22 0.2 0.18 0.16 0.14 0.12

0.1

0.08

0.04

0.02

LHCb

Signal MC

◆2012 data high-mass sideband
 ★Comb. background MC

- Normalised w.r.t. $B^0 \to J\!/\!\psi\,K^+$ and $B^0 \to K^+\pi^-$
- New isolation variables
- Improved BDT
- Tightened muon PID requirements cut $B \rightarrow h^+ h'^-$ background by 50% to improve sensitivity to $B^0 \rightarrow \mu^+ \mu^-$

$B \rightarrow \mu^+ \mu^-$ branching fractions

First single experiment observation of ${
m B}^0_{
m s}
ightarrow \mu^+\mu^-$

Consistent with SM.

[LHCb collaboration, Phys.Rev.Lett. 118 (2017) no.19, 191801]

6/23

$B^0_s ightarrow \mu^+ \mu^-$ effective lifetime

NP effects can appear in via the parameter

$$A_{\Delta\Gamma} \equiv \frac{\Gamma\left(B_s^H \to \mu^+\mu^-\right) - \Gamma\left(B_s^L \to \mu^+\mu^-\right)}{\Gamma\left(B_s^H \to \mu^+\mu^-\right) + \Gamma\left(B_s^L \to \mu^+\mu^-\right)}$$

even if the branching fraction agrees with the $\ensuremath{\mathsf{SM}}.$

In the SM $A_{\Delta\Gamma} = 1$ and meauring its sign can resolve a two-fold ambiguity in the sign of the real part of the Wilson Coefficient C_S .

The effective lifetime defined as the mean decay time of an untagged sample of $B_s^0 \to \mu^+\mu^-$ decays

$$\tau_{\mu^+\mu^-} = \frac{\int_0^\infty t\Gamma\left(B^0_s \to \mu^+\mu^-\right) dt}{\int_0^\infty \Gamma\left(B^0_s \to \mu^+\mu^-\right) dt}$$

is easier to measure directly and depends on $A_{\Delta\Gamma}.$

[De Bruyn et al., PRL 109 (2012) 041801]

$B^0_s \! \rightarrow \mu^+ \mu^-$ effective lifetime

First measurement of $B^0_s \! \rightarrow \mu^+ \mu^-$ effective lifetime made by LHCb:

- Softer selection compared to branching fraction
- Decay time distribution extracted using sWeights
- Decay time acceptance calculated from reweighted simulation
- Method verified on $B^0\!\to K^+\pi^-$

Effective $B^0 \rightarrow K^+\pi^-$ lifetime measured as: $\tau_{K\pi} = 1.52 \pm 0.03 \text{ (stat.) ps}$ compared to PDG value of $1.520 \pm 0.004 \text{ ps.}$

Lower mass cut at 5320 $\,\rm MeV$ to reject part reco background, found to give smallest stat uncertainty using toys - contamination treated as a systematic.

Effective lifetime measured as: $\tau_{\mu^+\mu^-} = 2.04 \pm 0.44 \,({\rm stat.}) \pm 0.05 \,({\rm syst.}) \,\,{\rm ps}$

Systematics dominated by the $B^0 \to K^+\pi^-$ lifetime measurement used to validate the acceptance correction. Will decrease with increasing statistics in future.

Currently statistically limited but consistent with SM prediction of $1.610\pm0.010\,{\rm ps}$ and favouring $A_{\Delta\Gamma}=+1.$

$B \rightarrow \mu^+ \mu^-$ future prospects

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	203+
		Run III					Run IV				Run V			
LS2						LS3					LS4			
LHCb 40 MHz UPGRADE		$L = 2 x 10^{33}$		LHCb Consolidation		$L = 2 x 10^{33} 50 fb^{-1}$		LHCb Ph II UPGRADE *		$L = 2 x 10^{34} 300 fb^{-1}$				
ATLAS Phase I Upgr		$L = 2 x 10^{34}$		ATLAS Phase II UPGRADE			HL-LHC $L = 5 \times 10^{34}$		ATLAS		HL-LHC $L = 5 \times 10^{34}$			
CMS Phase I Upgr		300 fb ⁻¹		CMS Phase II UPGRADE						смѕ		3000) fb ⁻¹	
Belle I	I	5 ab-1	L = 8 x	1035	50	ab-1								

[Plot from Niels Tuning]

Projected $B \rightarrow \mu^+ \mu^-$ uncertainties:

	Current	LHCb Upgrade	Phase II LHCb Upgrade
	$4.4\mathrm{fb}^{-1}$	$50{ m fb}^{-1}$	$300 {\rm fb}^{-1}$
$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$0.6 imes 10^{-9}$	0.31×10^{-9}	0.27×10^{-9}
R_{B_d/B_s}	-	[23, 27]%	[11, 13]%
$\tau_{\mu\mu}$	$0.44\mathrm{ps}$	$0.08\mathrm{ps}$	$0.03\mathrm{ps}$

 $\mathcal{B}(B^0_s\to\mu^+\mu^-)$ uncertainty dominated by $f_s/f_d.$ Theory uncertainty currently $0.23\times10^{-9}.$

 $0.038 \text{ ps required for the lifetime to distinguish } A_{\Delta\Gamma} = \pm 1 \text{ at } 5\sigma.$

Testing Lepton Flavour Universality

◆□ → ◆部 → ◆言 → ◆言 → ○へで 11/23

Tests of Lepton Flavour Universality

In SM the electroweak couplings to each lepton generation (e,μ,τ) are identical - any differences in particle interactions due to effect of mass differences on phase space and highly suppressed Higgs diagrams.

Almost all experimental tests to date have confirmed LFU, though a 2.8 σ tension exists in the branching fraction of $W \rightarrow \tau \nu_{\tau}$ compared to $W \rightarrow \mu \nu_{\mu}$ and $W \rightarrow e \nu_{e}$.

FCNC $b\to sl^+l^-$ decays are highly suppressed in SM due and may be sensitive to contributions from NP which violate LFU.

e.g. Z' bosons or leptoquarks, which could also account for $B \to K\mu^+\mu^-$ branching fraction anomalies.

Results from BaBar, Belle and LHCb have hinted at violation of LFU in semileptonic B decays:

$$R(D^{(*)}) \equiv \frac{\mathcal{B}\left(B \to D^{(*)}\tau\nu_{\tau}\right)}{\mathcal{B}\left(B \to D^{(*)}\mu\nu_{\mu}\right)}$$

Naive world-average of D^* , D^+ and D^0 ratios is 4.1σ from SM (see Mika's talk).

In 2014 LHCb measured deviation from SM in the ratio of $B^+ \to K^+ l^+ l^-$ decays, for $1 < q^2 < 6~{\rm GeV}^2/c^4$ using Run I data:

$$R(K) = \frac{\mathcal{B}\left(B^+ \to K^+ \mu^+ \mu^-\right)}{\mathcal{B}\left(B^+ \to K^+ e^+ e^-\right)} = 0.745^{+0.090}_{-0.074}(\text{stat}) \pm 0.036(\text{syst}).$$

 2.6σ deviation from SM prediction of 1.0 ± 0.0001 for $q^2>0.1\,{\rm GeV}^2/c^4$ (where lepton mass may be ignored).

[LHCb collaboration, Phys.Rev.Lett. 113 (2014) 151601], [Bobeth et al., JHEP 12 (2007) 040]

Tests of Lepton Flavour Universality

General approach to R(H) measurements at LHCb - measure with respect to $J\!/\psi$ control modes to cancel systematics

$$\begin{split} R(H) &\equiv \frac{\int_{q_{min}^2}^{q_{max}^2} \frac{d\mathcal{B}\left(B \to H\mu^+\mu^-\right)}{dq^2} dq^2}{\int_{q_{min}^2}^{q_{max}^2} \frac{d\mathcal{B}\left(B \to He^+e^-\right)}{dq^2} dq^2} \\ &= \frac{N_{B \to H\mu^+\mu^-}}{N_{B \to He^+e^-}} \frac{N_{B \to HJ/\psi}\left(e^+e^-\right)}{N_{B \to HJ/\psi}\left(\mu^+\mu^-\right)} \frac{\epsilon_{B \to He^+e^-}}{\epsilon_{B \to HJ/\psi}\left(e^+e^-\right)} \\ \end{split}$$

and assume no violation of lepton flavour universality in the $J\!/\psi\,$ modes.

14 / 23

Tests of Lepton Flavour Universality

General approach to R(H) measurements at LHCb:

• Electron data split into three independent Level-0 trigger categories, with different resolutions: triggered by one of the **electrons**, triggered by one of the **hadrons**, triggered **independently** of the candidate.

[LHCb collaboration, Phys.Rev.Lett. 113 (2014) 151601]

- MVA selection (BDT or Neural Network)
- · Efficiencies determined from simulation

$R\left(K^{*0}\right)$

Analysis performed using $B^0\to K^{*0}\mu^+\mu^-$ and $B^0\to K^{*0}e^+e^-$ decays in two q^2 bins:

• Low : $0.045 < q^2 < 1.1 \,\mathrm{GeV}^4/c^2$

• Central :
$$1.1 < q^2 < 6.0 \, \text{GeV}^4/c^2$$

∽ Q (16 / 23 Electron momentum resolution improved by dedicated bremsstrahlung recovery process:

- Electron track extrapolated upstream of the magnet
- Search made for ECAL energy deposits with $E_T > 75 \,\mathrm{MeV}$
- Brem clusters added to the electron momentum
- $\bullet\,$ If a cluster can be assigned to both e^+ and e^- then it is assigned to one at random

Data are split into three categories with different mass resolutions: no photons added, 1 photon added, >1 photon added. Overall mass PDF is sum of three Crystal Ball functions - one for each category - fitted to simulation.

Data and simulation in good agreement on number of brem photos recovered.

Cross-check of the quantity

$$R(J/\psi) \equiv \frac{\mathcal{B}\left(B^0 \to K^{*0}J/\psi\;(\mu^+\mu^-)\right)}{\mathcal{B}\left(B^0 \to K^{*0}J/\psi\;(e^+e^-)\right)} = 1.043 \pm 0.006(\text{stat.}) \pm 0.045(\text{syst.})$$

Stringent rest as $R(J/\psi)$ doesn't benefit from systematic cancellations.

Double ratio $R(\psi(2S))$ also measured to 2% precision and agrees with unity within 1σ .

 $\mathcal{B}\left(B^0 \to K^{*0} \mu^+ \mu^-\right) \text{ and } \mathcal{B}\left(B^0 \to K^{*0} \gamma(\to e^+ e^-)\right) \text{measured and found to agree with previous LHCb measurement }_{\text{[LHCb collaboration, JHEP 11 (2016) 047]}} \text{ and expectations, respectively.}$

Corrections to simulation turned off and found to only shift the result by 5%.

$R\left(K^{*0} ight)$ results

Final result shows similar tension to the SM as $B^+ \rightarrow K^+ l^+ l^-$:

 $R\left(K\right)$ and $R\left(K^{*0}\right)$ have generated a lot if interest in LFU tests at LHCb. A number of new analyses are in the pipeline:

- $\bullet ~ R(B^0_s \to \phi l^+ l^-)$
- $\bullet ~ R(\Lambda_b^0 \to p K^- l^+ l^-)$
- $R(K\pi\pi)$
- $R(B^0 \rightarrow K^0_{
 m S} l^+ l^-)$
- $R(B^+ \rightarrow K^{*+}l^+l^-)$
- \bullet Inclusive R(KX) where X is not reconstructed
- Angular LFU analysis of $B^0 \to K^{*0} l^+ l^-$ and $B^+ \to K^+ l^+ l^-$

 Plan to harmonise analysis techniques across LFU measurements and develop common tools.

(ロ) (部) (E) (E) (E) (000)

Measurement of $R\left(\phi\right)$ using $B_{s}^{0}\rightarrow\phi l^{+}l^{-}$ exploring making a measurement in additional high q^{2} region $15< q^{2}<19$ thanks to smaller and better separated partially (and over) reconstructed backgrounds and reduced peaking backgrounds due to narrow ϕ resonance.

Also increased interest in Lepton Flavour Violating decays, which naturally accompany LFU violation, e.g. $B \rightarrow K \mu \tau$, $B \rightarrow e \mu$.

Limits already set for 1 fb^{-1} :

• $\mathcal{B}(B^0_s \to e^{\pm} \mu^{\mp}) < 1.1(1.4) \times 10^{-8}$ • $\mathcal{B}(B^0 \to e^{\pm} \mu^{\mp}) < 2.8(3.7) \times 10^{-9}$

[LHCb collaboration, Phys.Rev.Lett. 111 (2013) 141801]

Plot from Tom Blake

 $R\left(K\right)$ and $R\left(K^{*0}\right)$ will remain the most statistcally powerful measurements and updates using the Run II data sample are in progress.

Observable	Run I	Run II	LHCb Upgrade	LHCb Phase II Upgrade
	$3 {\rm fb}^{-1}$	$8{ m fb}^{-1}$	$50{ m fb}^{-1}$	$300 {\rm fb}^{-1}$
$N(B^+ \to K^+ \mu^+ \mu^-)$	4746	18,159	139,491	861,709
$N(B^+ \to K^+ e^+ e^-)$	254	972	7465	46,118
$R\left(K ight)$ uncertainty	0.090	0.046	0.017	0.007
$N(B^0 \to K^{*0} \mu^+ \mu^-)$	2398	9175	70,480	435,393
$N(B^0 \to K^{*0}e^+e^-)$	111	425	3262	20,154
$R\left(K^{st0} ight)$ uncertainty	0.11	0.056	0.020	0.008

If central values remain the same then lepton flavour universality violation should be observed at $>5\sigma$ by the end of Run II.

Thanks

23 / 23