

$b ightarrow s \ell^+ \ell^-$ transitions

Konstantinos A. Petridis on behalf of the LHCb collaboration

University of Bristol

September 5, 2017

Introduction

- Run 1 of the LHC provided us with a rich set of results
 → Rise of the precision era for rare decays
- ▶ Branching fractions and angular analyses of $b \rightarrow s\ell\ell$ transitions indicating interesting tensions with the SM
 - \rightarrow Discuss latest measurements and prospects

LHCb signal yields

channel	Run 1	Run 2	Run 3,4 (50fb ⁻¹)
$B^0 \to K^{*0}(K^+\pi^-)\mu^+\mu^-$	2,400	9,000	80,000
$B^0 ightarrow K^{st+} (K^0_{ m S} \pi^+) \mu^+ \mu^-$	160	600	5,500
$B^0 ightarrow K^0_{ m S} \mu^+ \mu^-$	180	650	5,500
$B^+ ightarrow ec{K^+} \mu^+ \mu^-$	4,700	17,500	150,000
$\Lambda_b ightarrow \Lambda \mu^+ \mu^-$	370	1500	10,000
$B^+ ightarrow \pi^+ \mu^+ \mu^-$	93	350	3,000
$B_{s}^{0} ightarrow \mu^{+} \mu^{-1}$	15	60	500
$B^{0} \rightarrow K^{*0} e^{+} e^{-}$ (low q^{2})	150	550	5,000
$B_s \to \phi \gamma$	4,000	15,000	150,000

Naively scaling with luminosity and linear scaling of $\sigma_{b\bar{b}}$ with \sqrt{s} . Extrapolated yields rounded to the nearest 50/500

- Our measurements of dB/dq² obtained by normalising rare yield to that of normalisation channel B → J/ψK*
- More $b \to s\ell\ell$ decays in Run 1 than $B \to J/\psi K^*$ of B-factories!

An intriguing set of results

- 1. Measurements of decay rates of $B \to K^{(*)}\mu^+\mu^-$ and $B_s \to \phi\mu^+\mu^ \to$ Large theory uncertainties. But lattice calculations provide precision at large dimuon masses squared (q^2)
- 2. Angular analyses of $B \to K^{(*)}\mu^+\mu^-$ and $B_s \to \phi\mu^+\mu^ \to$ Can access observables with reduced dependence on theory uncertainties
- Measurements of ratios of decay rates of B → K^(*)ℓ⁺ℓ⁻
 → Cancellations of hadronic form-factor uncertainties in predictions (see Harry's talk)

Differential branching fractions of $b ightarrow s \mu^+ \mu^-$ decays

▶ Measurement of $d{\cal B}/dq^2$ of $B o K^{(*)}\mu^+\mu^-$, $\Lambda_b o \Lambda\mu^+\mu^-$, $B_s o \phi\mu^+\mu^-$

Theory: Bobeth et al [JHEP07(2011)067], Bharucha et al [JHEP08(2016)098], Detmold et al [PRD87(2013)], Horgan et al [PRD89(2014)]

- Measurements below SM prediction $(2 3\sigma$ depending on final state)
- Dominant systematic uncertainty: Knowledge equivalent J/ψ BF

K.A. Petridis (UoB)

$B^0 ightarrow K^{*0} \mu^+ \mu^-$

• Differential decay rate of $B^0 \to K^{*0} \mu^+ \mu^-$:

$$\begin{aligned} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\vec{\Omega}}\Big|_{\mathrm{P}} &= \frac{9}{32\pi} \Big[\frac{3}{4}(1-F_{\mathrm{L}})\sin^2\theta_K + F_{\mathrm{L}}\cos^2\theta_K \\ &\quad +\frac{1}{4}(1-F_{\mathrm{L}})\sin^2\theta_K\cos2\theta_l \\ &\quad -F_{\mathrm{L}}\cos^2\theta_K\cos2\theta_l + S_3\sin^2\theta_K\sin^2\theta_l\cos2\phi \\ &\quad +S_4\sin2\theta_K\sin2\theta_l\cos\phi + S_5\sin2\theta_K\sin\theta_l\cos\phi \\ &\quad +\frac{4}{3}A_{\mathrm{FB}}\sin^2\theta_K\cos\theta_l + S_7\sin2\theta_K\sin\theta_l\sin\phi \\ &\quad +S_8\sin2\theta_K\sin2\theta_l\sin\phi + S_9\sin^2\theta_K\sin^2\theta_l\sin2\phi \Big] \end{aligned}$$

- Fit also for S-wave observables (not shown)
- ► S_i terms depend on short- and long-distance parameters

$B^0 ightarrow {\cal K}^{*0} \mu^+ \mu^-$ angular analysis

- Reparametrise angular distribution in terms of observables with reduced FF dependence (e.g P'₅)
- ► Combining measurements of *dB/dq²* and angular distribution from LHCb, Belle, CMS, ATLAS → Strong deviations particularly in dilepton vector coupling C₉
 - \rightarrow Tension at 4.5 $\sigma-5\sigma$ level e.g Altmannshofer et al [1703.09189], Matias et al [1704.05340]

ATLAS,CMS,Belle,LHCb at Moriond 2017

Matias et al [1704.05340], 3σ contours of individual expts

7 / 19

Interpretations

 \blacktriangleright Several attempts to interpret $b
ightarrow s \mu^+ \mu^-$ and $b
ightarrow s \gamma$ data

 \rightarrow New vector Z', leptoquarks, vector-like confinement... evading direct detection searches

Buttazzo et al [1604.03940], Bauer et al [PRL116,141802(2016)], Crivellin et al [PRL114,151801(2015)], Altmanshofer et al [PRD89(2014)095033]... Diptomoy et al [PRD89(2014)071501], Descotes-Genon et al [PRD88(2013)074002]

Potential problem with our understanding of the contribution from

 $B \rightarrow X_{c\bar{c}}(\rightarrow \mu\mu)K$ Lyon,Zwicky [1406.0566], Altmannshofer,Straub[1503.06199], Ciuchini et al [1512.07157]...

 \rightarrow Mimics vector-like new physics effects (corrections to C_9)

Impact on dilepton vector coupling

► Dependence of observables on vector couplings enters through $C_9^{eff} = C_9 + Y(q^2)$ $\rightarrow Y(q^2)$ summarises contributions from $bs\bar{q}q$ operators

Main culprit is the large cc̄ component such as the J/ψ
 → Corrections to C₉^{eff} (ΔC₉) all the way down to q² = 0
 Effect strongly dependent on relative phase with penguin

Measuring phase differences [Eur. Phys.J. C(2017)77:161]

 Write differential decay rate in terms of short- and long-distance contributions

 \rightarrow Model resonances as relativistic Breit–Wigners multiplied by relative scale and phase inspired by Lyon Zwicky [1406.0566], Hiller et al. [1606.00775]

$$ightarrow C_9^{eff} = \sum_j \eta_j e^{i \delta_j} A_{res}(q^2) + C_9$$

Fit dimuon spectrum to obtain:

 \rightarrow Relative phases between resonant and penguin amplitudes

 \rightarrow C_9 and C_{10}

 \rightarrow Further constrain lattice input $_{\rm Bailey\ et\ al}\ [PRD93,025026(2016]\ On\ form-factor\ f_+(q^2)$

Measuring phase differences cont'd [Eur. Phys.J. C(2017)77:161]

- Results show minimal interference with J/ψ and ψ(2S) resonances
- ► J/ψ and ψ(2S) resonances play sub-dominant role below their pole mass

Resonance	J/ψ negative/ ψ	J/ψ negative/ $\psi(2S)$ negative	
	Phase [rad]	Branching fraction	
ρ(770)	-0.35 ± 0.54	$(1.71 \pm 0.25) \times 10^{-10}$	
$\omega(782)$	0.26 ± 0.39	$(4.93\pm0.59)\times10^{-10}$	
$\phi(1020)$	0.47 ± 0.39	$(2.53\pm 0.26)\times 10^{-9}$	
J/ψ	-1.66 ± 0.05	-	
$\psi(2S)$	-1.93 ± 0.10	$(4.64\pm 0.20)\times 10^{-6}$	
$\psi(3770)$	-2.13 ± 0.42	$(1.38\pm 0.54)\times 10^{-9}$	
$\psi(4040)$	-2.52 ± 0.66	$(4.17\pm2.72)\times10^{-10}$	
$\psi(4160)$	-1.90 ± 0.64	$(2.61\pm 0.84)\times 10^{-9}$	
$\psi(4415)$	-2.52 ± 0.36	$(6.04\pm3.93)\times10^{-10}$	

- ▶ Does not tell us anything about $B^0 \to K^{*0} \mu^+ \mu^-$, dedicated analysis required
 - > One phase per helicity amplitude per resonances

Measuring charm effect in $B^0 \to K^{*0} \mu^+ \mu^-$

- Can compare model of long-distance contributions with predictions such as BCDV [1707.07305]
- More details appearing in Pomery, KP, Egede, Blake, Owen [1709.XXXXX]

- Ongoing work to perform measurement including resonances above open charm threshold
- Update of measurement of binned observables with Run2 data also underway

Other $K^+\pi^-$ states in $B^0 o K^{*0}\mu^+\mu^-$ [JHEP11(2016)047]

► Measure S-wave fraction in 644 $< m_{K\pi} < 1200 \text{ MeV}/c^2$ [JHEP11(2016)047] \rightarrow Enables first determination of P-wave only $B^0 \rightarrow K^{*0}(892)\mu^+\mu^$ differential branching fraction

Additional data should provide sensitivity to potential non-resonant P-wave contributions

 \rightarrow Orthogonal constraints provided theory uncertainties under control $_{\text{Das et al}}$ $_{[1406.6681]}$ What are prospects here? Our measurements could help

Other $K^+\pi^-$ states cont'd [JHEP12(2016)065]

Angular moment and differential branching fraction analysis in $1330 < m_{K\pi} < 1530 \text{ MeV}/c^2$ [JHEP12(2016)065]

 \rightarrow Measure 40 normalised angular moments sensitive to interference between S-, P- and D-wave

 \rightarrow No significant D-wave component observed in contrast to $B^0 \rightarrow J/\psi K^+\pi^-$

▶ In Run 1: 230 candidates, by Run 4 7500 candidates (×3 as many candidates as current $B^0 \rightarrow K^{*0}(892)\mu^+\mu^-$ yield)

 \rightarrow Estimates of $B \rightarrow K^*_{J=0,2}$ form-factors exist $_{\text{Lu et al [PRD85(2012)]}}$ but more input from theory required to constrain Wilson coefficients from these measurements. What are prospects here?

 $B^0 o {\cal K}^{*0} e^+ e^-$ angular analysis ьнсь [јнеро4(2015)064]

- ► Measure angular observables in 0.0004 < q² < 1GeV² → dominated by C₇['] contributions
- ► ~ 150 signal candidates \rightarrow Fit in $cos\theta_{\ell}$, $cos\theta_{K}$ and "folded" ϕ to measure A_{T2} , A_{T}^{lm} , A_{T}^{Re} , F_{L}

- Measurements complementary to BFs and $A_{CP}(t)$ of $B \to K^*\gamma$ and $B_s \to \phi\gamma$
- Provide one of strongest constraints to C₇'

Paul, Straub [1608.02556]

 $B^0
ightarrow K^{*0} e^+ e^-$ angular analysis prospects

▶ With Run2, by 2018 data expect $B^0 \to K^{*0}e^+e^-$ yield:

- $\,\triangleright\,\,\sim$ 400 in 0.045 $< q^2 < 1.1~{\rm GeV^2}$
- $ho~\sim 500$ in $1.1 < q^2 < 6~{
 m GeV^2}$
- ho~ Similar to $B^0
 ightarrow {\cal K}^{*0} \mu^+ \mu^-$ with Run1 data in same bin
- \rightarrow Measurements of multiple angular observables possible through multi-dimensional ML fits

 \rightarrow Different experimental effects compared to $R_{K}^{(*)}$

- Larger backgrounds than muon case will require good understanding of their angular distribution
- More robust methods also being investigated

Measurements with $\Lambda_b o \Lambda^* (o ho K) \mu^+ \mu^-$ LHC6 [JHEP06(2017)103]

Using Run1 data, perform first observation of this mode and measure:

- The *CP* asymmetry relative to $\Lambda_b \rightarrow pKJ/\psi$ (ΔA_{CP})
 - ▷ Cancellation of detector and production asymmetry
- The \hat{T} -odd *CP* asymmetry: $a_{CP}^{\hat{T}-odd} \equiv \frac{1}{2}(A_{\hat{T}} \overline{A}_{\hat{T}})$
 - $\triangleright A_{\hat{T}}(\overline{A}_{\hat{T}})$ is a triple product asymmetry of the $\Lambda_b(\overline{\Lambda}_b)$
- These asymmetries have different dependencies on strong phases and sensitivities to NP

No evidence for CP asymmetry observed

K.A. Petridis (UoB)

$B^+ o \pi^+ \mu^+ \mu^-$ lhcb [jhep10(2015)034]

- \blacktriangleright Very relevant if tensions persist \rightarrow test MFV nature of new physics
- Latest lattice results enable further precision tests of CKM paradigm Buras,Blanke[1602.04020], FNAL/MILC[1602.03560]
- \blacktriangleright Current measurement from penguin decays of $|V_{td}/V_{ts}|=0.201\pm0.020$ $_{\rm FNAL/MILC[PRD93,034005(2016]}$

LHCb [JHEP10(2015)034] FNAL/MILC[1602.03560], FNAL/MILC[PRD93,034005(2016)]

▶ Ongoing measurement of $B_s \rightarrow \bar{K}^{*0} \mu^+ \mu^-$. Larger datasets will make an angular analysis of this decay an interesting prospect

$\Lambda_b o p \pi \mu^+ \mu^-$ lhcb [jhepo4(2017)029]

- First observation of baryonic $b \rightarrow d\mu^+\mu^-$ transition (5.5 σ)
- Use Run1 data and measure relative to $\Lambda_b \rightarrow J/\psi p\pi$
- $\mathcal{B}(\Lambda_b \to p\pi\mu\mu) = (6.9 \pm 1.9 \pm 1.1^{+1.3}_{-1.0}) \times 10^{-8}$
- These decays will greatly benefit with Run 2 and beyond

▶
$$b \rightarrow d\mu^+\mu^-$$
 the new $b \rightarrow s\mu^+\mu^-$:

- ▶ Run 1: 93 $B^+ \rightarrow \pi^+ \mu^+ \mu^-$, 40 $B^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$
- ▶ 300fb⁻¹: 18,000 $B^+ \to \pi^+ \mu^+ \mu^-$ and 4,000 $B^+ \to \pi^+ e^+ e^-$ (naive scaling)
- ▶ 300fb⁻¹: 8,000 $B^+ \rightarrow \pi^+\pi^-\mu^+\mu^-$ and 2,000 $B^+ \rightarrow \pi^+\pi^-e^+e^-$ (naive scaling)
 - \rightarrow Allows for precision MFV and MFV+LNU tests

Summary

- ▶ Run 1 and 2 of the LHC introduce precision era in rare *B*-decay measurements
- ▶ Precision reveals tensions. Run2 data aimed at understanding these

 \rightarrow Clarify the impact of $c\bar{c}$ and other resonances in $B\rightarrow K^{(*)}\mu^+\mu^-$ observables

- ightarrow Update of $B
 ightarrow {\cal K}^{*0}\mu^+\mu^-$ on its way
- ightarrow Plethora of observables for $K^*_{J=0.2}$ states and baryonic decays
- ► Towards Run3,4 and beyond
 - \rightarrow Clear physics case for rare decays given stat precision
 - \rightarrow Big gains in $b\rightarrow d$ transitions and final states with electrons
 - \rightarrow Critical to maintain detector performance

Backup

Electroweak penguin processes

b → sℓ⁺ℓ⁻ are FCNC transitions and are suppressed in SM
 → Only occur via loop or box processes

► New physics contributions at the same level as SM → Highly sensitive to effects of new physics

- New physics enters as virtual particles in loops
 - \rightarrow Access energy scales above available collision energy

Formalism

- Model independent approach
- ▶ "Integrate" out heavy $(m \ge m_W)$ field(s) and introduce set of Wilson coefficients C_i , and operators \mathcal{O}_i encoding long and short distance effects

$$\mathcal{H}_{eff} pprox -rac{4G_F}{\sqrt{2}} V_{tb} V^*_{ts(d)} \sum_i C^{SM}_i \mathcal{O}^{SM}_i + \sum_{NP} rac{c_{NP}}{\Lambda^2_{NP}} \mathcal{O}_{NP}$$

▶ c.f. Fermi interaction and G_F

Sensitivity to New Physics

Different decays probe different operators e.g:

Operator \mathcal{O}_i	$B_{s(d)} ightarrow X_{s(d)} \mu^+ \mu^-$	$B_{s(d)} ightarrow \mu^+ \mu^-$	$B_{s(d)} \rightarrow X_{s(d)}\gamma$
$\mathcal{O}_7 \sim m_b (ar{s_L} \sigma^{\mu u} b_R) F_{\mu u}$	\checkmark		\checkmark
${\cal O}_9 \sim (ar s_L \gamma^\mu b_L) (ar \ell \gamma_\mu \ell)$	\checkmark		
${\cal O}_{10}\sim (ar s_L\gamma^\mu b_L)(ar \ell\gamma_5\gamma_\mu\ell)$	\checkmark	\checkmark	
$\mathcal{O}_{\mathcal{S},P} \sim (ar{s}b)_{\mathcal{S},P}(ar{\ell}\ell)_{\mathcal{S},P}$	(√)	\checkmark	

- In SM $C_{S,P} \propto m_\ell m_b / m_W^2$
- ▶ In SM chirality flipped O_7 suppressed by m_s/m_b and rest are zero
- Different regions in dilepton mass squared (q²) probe different mixtures of couplings

Experimental aspects I

Selection:

- Reduce combinatorial background using Multivariate classifiers, (typically Boosted Decision Tree)
 - ▷ Using kinematic and topological information
 - $\,\triangleright\,$ Variable choice based on minimising correlation with mass
- ► Reduce "peaking" backgrounds using particle-ID information
 - ▷ Exclusive decays with final state hadron(s) mis-Id
 - ▷ Estimate by mixture of MC and data-driven studies

Experimental aspects II

Normalisation:

 Make use of proxy-decay with similar topology and of known branching fraction (B) to normalize against

$$\mathcal{B}(\textit{sig}) = rac{N_{\textit{sig}} \epsilon_{\textit{sig}}}{N_{\textit{prx}} \epsilon_{\textit{prx}}} \mathcal{B}(\textit{prx})$$

Reduces experimental uncertainties

Experimental aspects III

Acceptance correction:

- Efficiency parametrised depending on type of measurement of ${\cal B}$
 - ▷ Differential with respect to di-muon mass squared (q²) or angular distribution of decay products of the b-Hadron

3. Angular analysis of $B^0 o K^{*0} \mu^+ \mu^-$

• Differential decay rate of $B^0 \to K^{*0} \mu^+ \mu^-$ and $\bar{B}^0 \to \bar{K}^{*0} \mu^+ \mu^-$:

$$\begin{split} \frac{\mathrm{d}^4\Gamma[\bar{B}^0\to\bar{K}^{*0}\mu^+\mu^-]}{\mathrm{d}q^2\,\mathrm{d}\vec{\Omega}} = & \frac{9}{32\pi}\sum_i I_i(q^2)f_i(\vec{\Omega}) \quad \mathrm{and} \\ \frac{\mathrm{d}^4\bar{\Gamma}[\bar{B}^0\to K^{*0}\mu^+\mu^-]}{\mathrm{d}q^2\,\mathrm{d}\vec{\Omega}} = & \frac{9}{32\pi}\sum_i \bar{I}_i(q^2)f_i(\vec{\Omega}) \ , \end{split}$$

▶ I_i : bilinear combinations of 6 *P*-wave and 2 *S*-wave helicity amplitudes (since K^{*0} can be found in J = 1 and J = 0)

Reparametrise distribution in terms of:

$$S_{i} = \left(I_{i} + \bar{I}_{i}\right) \left/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right) \text{ and} A_{i} = \left(I_{i} - \bar{I}_{i}\right) \left/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right).$$

• Determine various S_i or A_i by a 3+1D angular $m_{K\pi}$ distribution in bins of q^2

Angular terms

i	I_i	f_i			
1s	$\frac{3}{4}\left[\mathcal{A}_{\parallel}^{L} ^{2}+ \mathcal{A}_{\perp}^{L} ^{2}+ \mathcal{A}_{\parallel}^{R} ^{2}+ \mathcal{A}_{\perp}^{R} ^{2}\right]$	$\sin^2 \theta_K$	10	1 [1 4L12 . 1 4R12]	
1c	$ A_{L}^{L} ^{2} + A_{R}^{R} ^{2}$	$\cos^2 \theta_V$	10	$\left[\frac{1}{3}\left[\mathcal{A}_{\tilde{S}} ^{-} + \mathcal{A}_{\tilde{S}} ^{-}\right]\right]$	1
2s	$\frac{1}{4} \left[\mathcal{A}_{\parallel}^{\mathrm{L}} ^2 + \mathcal{A}_{\perp}^{\mathrm{L}} ^2 + \mathcal{A}_{\parallel}^{\mathrm{R}} ^2 + \mathcal{A}_{\parallel}^{\mathrm{R}} ^2 \right]$	$\sin^2 \theta_K \cos 2\theta_l$	11	$\sqrt{\frac{4}{3}} \mathrm{Re}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}} \mathcal{A}_{0}^{\mathrm{L}*} + \mathcal{A}_{\mathrm{S}}^{\mathrm{R}} \mathcal{A}_{0}^{\mathrm{R}*})$	$\cos \theta_K$
2c	$- \mathcal{A}_{0}^{L} ^{2} - \mathcal{A}_{0}^{R} ^{2}$	$\cos^2 \theta_K \cos 2\theta_l$	12	$-\frac{1}{3} \left[A_{S}^{L} ^{2} + A_{S}^{R} ^{2} \right]$	$\cos 2\theta_l$
3	$\frac{1}{2}\left[\mathcal{A}_{\perp}^{L} ^{2}- \mathcal{A}_{\parallel}^{L} ^{2}+ \mathcal{A}_{\perp}^{R} ^{2}- \mathcal{A}_{\parallel}^{R} ^{2}\right]$	$\sin^2\theta_K \sin^2\theta_l \cos 2\phi$	13	$-\sqrt{\frac{4}{3}}\operatorname{Re}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\mathcal{A}_{0}^{\mathrm{L}*}+\mathcal{A}_{\mathrm{S}}^{\mathrm{R}}\mathcal{A}_{0}^{\mathrm{R}*})$	$\cos \theta_K \cos 2\theta_k$
4	$\sqrt{\frac{1}{2}} \operatorname{Re}(\mathcal{A}_{0}^{\mathrm{L}}\mathcal{A}_{\parallel}^{\mathrm{L}*} + \mathcal{A}_{0}^{\mathrm{R}}\mathcal{A}_{\parallel}^{\mathrm{R}*})$	$\sin 2\theta_K \sin 2\theta_l \cos \phi$	14	$\sqrt{\frac{2}{3}} \operatorname{Re}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}} \mathcal{A}_{\parallel}^{\mathrm{L}*} + \mathcal{A}_{\mathrm{S}}^{\mathrm{R}} \mathcal{A}_{\parallel}^{\mathrm{R}*})$	$\sin \theta_K \sin 2\theta_l$
5	$\sqrt{2} \operatorname{Re}(\mathcal{A}_0^{\mathrm{L}} \mathcal{A}_{\perp}^{\mathrm{L}*} - \mathcal{A}_0^{\mathrm{R}} \mathcal{A}_{\perp}^{\mathrm{R}*})$	$\sin 2\theta_K \sin \theta_l \cos \phi$	15	$\sqrt{\frac{8}{3}} \operatorname{Re}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\mathcal{A}_{\perp}^{\mathrm{L}*} - \mathcal{A}_{\mathrm{S}}^{\mathrm{R}}\mathcal{A}_{\perp}^{\mathrm{R}*})$	$\sin \theta_K \sin \theta_l c$
6s	$2\mathrm{Re}(\mathcal{A}_{\parallel}^{\mathrm{L}}\mathcal{A}_{\perp}^{\mathrm{L}*}-\mathcal{A}_{\parallel}^{\mathrm{R}}\mathcal{A}_{\perp}^{\mathrm{R}*})$	$\sin^2 \theta_K \cos \theta_l$	16	$\sqrt{\frac{8}{3}}$ Im $(\mathcal{A}_{S}^{L}\mathcal{A}_{\parallel}^{L*} - \mathcal{A}_{S}^{R}\mathcal{A}_{\perp}^{R*})$	$\sin \theta_K \sin \theta_l s$
7	$\sqrt{2} Im (\mathcal{A}_0^L \mathcal{A}_{\parallel}^{L*} - \mathcal{A}_0^R \mathcal{A}_{\parallel}^{R*})$	$\sin 2\theta_K \sin \theta_l \sin \phi$	17	$\sqrt{\frac{2}{3}} \text{Im}(\mathcal{A}_{S}^{L}\mathcal{A}_{\perp}^{L*} + \mathcal{A}_{S}^{R}\mathcal{A}_{\perp}^{R*})$	$\sin \theta_K \sin 2\theta_l$
8	$\sqrt{\frac{1}{2}} \mathrm{Im}(\mathcal{A}_0^{\mathrm{L}} \mathcal{A}_{\perp}^{\mathrm{L}*} + \mathcal{A}_0^{\mathrm{R}} \mathcal{A}_{\perp}^{\mathrm{R}*})$	$\sin 2\theta_K \sin 2\theta_l \sin \phi$		I V *	I
9	$\operatorname{Im}(\mathcal{A}_{\parallel}^{\operatorname{L*}}\mathcal{A}_{\perp}^{\operatorname{L}} + \mathcal{A}_{\parallel}^{\operatorname{R*}}\mathcal{A}_{\perp}^{\operatorname{R}})$	$\sin^2 \theta_K \sin^2 \theta_l \sin 2\phi$			

Amplitudes I

[JHEP 0901(2009)019] Altmannshofer et al.

$$\begin{split} A_{\perp}^{L(R)} &= N\sqrt{2\lambda} \bigg\{ \left[(\mathbf{C_{9}^{eff}} + \mathbf{C_{9}^{'eff}}) \mp (\mathbf{C_{10}^{eff}} + \mathbf{C_{10}^{'eff}}) \right] \frac{\mathbf{V(q^{2}})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathbf{C_{7}^{eff}} + \mathbf{C_{7}^{'eff}}) \mathbf{T_{1}(q^{2})} \bigg\} \\ A_{\parallel}^{L(R)} &= -N\sqrt{2} (m_{B}^{2} - m_{K^{*}}^{2}) \bigg\{ \left[(\mathbf{C_{9}^{eff}} - \mathbf{C_{9}^{'eff}}) \mp (\mathbf{C_{10}^{eff}} - \mathbf{C_{10}^{'eff}}) \right] \frac{\mathbf{A_{1}(q^{2})}}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathbf{C_{7}^{eff}} - \mathbf{C_{7}^{'eff}}) \mathbf{T_{2}(q^{2})} \bigg\} \\ A_{0}^{L(R)} &= -\frac{N}{2m_{K^{*}}\sqrt{q^{2}}} \bigg\{ \left[(\mathbf{C_{9}^{eff}} - \mathbf{C_{9}^{'eff}}) \mp (\mathbf{C_{10}^{eff}} - \mathbf{C_{10}^{'eff}}) \right] \left[(m_{B}^{2} - m_{K^{*}}^{2} - q^{2})(m_{B} + m_{K^{*}}) \mathbf{A_{1}(q^{2})} - \lambda \frac{\mathbf{A_{2}(q^{2})}}{m_{B} + m_{K^{*}}} \right] \\ &+ 2m_{b} (\mathbf{C_{7}^{eff}} - \mathbf{C_{7}^{'eff}}) \left[(m_{B}^{2} + 3m_{K^{*}} - q^{2}) \mathbf{T_{2}(q^{2})} - \frac{\lambda}{m_{B}^{2} - m_{K^{*}}^{2}} \mathbf{T_{3}(q^{2})} \right] \bigg\} \end{split}$$

- C_i^{eff}: Wilson coefficients (including 4-quark operator contributions)
- ▶ \mathbf{A}_i , \mathbf{T}_i and \mathbf{V}_i : 7 $B \to K^*$ form factors

Amplitudes II

► At leading order and for large dimuon masses squared (q^2) below $\sim 6 \text{GeV}^2/c^4$, form factors reduce to $\xi_{\perp}, \xi_{\parallel}$:

$$A_{\perp}^{L,R} = \sqrt{2}Nm_B(1-\hat{s}) \left[(\mathcal{C}_9^{\text{eff}} + \mathcal{C}_9^{\text{eff}}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\text{eff}} + \mathcal{C}_7^{\text{eff}}) \right] \xi_{\perp}(E_{K^*})$$

$$A_{\parallel}^{L,R} = -\sqrt{2}Nm_B(1-\hat{s}) \bigg[(\mathcal{C}_9^{\text{eff}} - \mathcal{C}_9^{\text{eff}'}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\text{eff}} - \mathcal{C}_7^{\text{eff}'}) \bigg] \xi_{\perp}(E_{K^*})$$

$$A_0^{L,R} = -\frac{Nm_B(1-\hat{s})^2}{2\hat{m}_{K^*}\sqrt{\hat{s}}} \bigg[(\mathcal{C}_9^{\text{eff}} - \mathcal{C}_9^{\text{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_b(\mathcal{C}_7^{\text{eff}} - \mathcal{C}_7^{\text{eff}}) \bigg] \xi_{\parallel}(E_{K^*})$$

► Can build form factor independent observables using ratios of bilinear amplitude combinations [JHEP 1301(2013)048] Descotes-Genon et al. e.g:

$$P_5' \sim \frac{Re(A_0^L A_{\perp}^L - A_0^R A_{\perp}^*)}{\sqrt{(|A_0^L|^2 + |A_0^R|^2)(|A_{\perp}^L|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^L|^2 + |A_{\parallel}^R|^2)}}$$

Acceptance correction

- ▶ Trigger, reconstruction and selection efficiency distorts the angular and q^2 distribution of $B^0 \to K^{*0} \mu^+ \mu^-$
- Acceptance correction parametrised using 4D Legendre polynomials
- ▶ Use moment analysis in $B^0 \to K^{*0} \mu^+ \mu^-$ MC to obtain coefficients c_{klmn}
- Cross-check acceptance in $B^0 \rightarrow J/\psi K^{*0}$

$$\varepsilon(\cos\theta_{\ell},\cos\theta_{K},\phi,q^{2}) = \sum_{klmn} c_{klmn} P_{k}(\cos\theta_{\ell}) P_{l}(\cos\theta_{K}) P_{m}(\phi) P_{n}(q^{2})$$

Acceptance correction

- ▶ Trigger, reconstruction and selection efficiency distorts the angular and q^2 distribution of $B^0 \to K^{*0} \mu^+ \mu^-$
- Acceptance correction parametrised using 4D Legendre polynomials
- Use moment analysis in $B^0 \to K^{*0} \mu^+ \mu^-$ MC to obtain coefficients c_{klmn}
- Cross-check acceptance in $B^0 o J/\psi K^{*0}$

$$\varepsilon(\cos\theta_{\ell},\cos\theta_{K},\phi,q^{2}) = \sum_{klmn} c_{klmn} P_{k}(\cos\theta_{\ell}) P_{l}(\cos\theta_{K}) P_{m}(\phi) P_{n}(q^{2})$$

Angular analysis results

- LHCb has performed the first full angular analysis of the decay through a maximum likelihood fit to the data
 Measurement of the full set of CP-averaged and CP-asymmetric angular terms and their correlations
 - \rightarrow Also determine the "less form-factor dependent" observables $P_i^{(\prime)}$

- Also measure all observables using a principal moment analysis of the angular distribution
 - \triangleright Robust estimator even for small datasets \rightarrow finer q^2 binning
 - > Statistically less precise than result of maximum likelihood fit

«) (*********************************

Zero crossing points

Š s_{4} 0.5 LHCb LHCb LHCb Amplitude fit Amplitude fit Amplitude fit · Likelihood fit Likelihood fit Likelihood fit Method of moments Method of momer Method of moments -0.1 $q^2 \,[{\rm GeV}^2/c^4]$ $q^2 \,[{\rm GeV}^2/c^4]$ $q^2 \,[{\rm GeV}^2/c^4]$

[JHEP02(2016)104]

▶ Determine zero crossing points of S_4 , S_5 and A_{FB} by parametrising the angular distribution in terms of q^2 dependent decay amplitudes

• Choose a q^2 ansatz to model the six complex amplitudes: $A_{0,1,\parallel}^{L,R} = \alpha_i + \beta_i q^2 + \gamma_i/q^2$ Egede, Patel, KP [JHEP06(2015)084]

The zero crossing points measured are:

$$\begin{aligned} q_0^2(S_5) &\in [2.49, 3.95] \text{GeV}^2/c^4 \text{ at } 68\% \text{ C.L.} \\ q_0^2(A_{ ext{FB}}) &\in [3.40, 4.87] \text{GeV}^2/c^4 \text{ at } 68\% \text{ C.L.} \\ q_0^2(S_4) &< 2.65 \text{GeV}^2/c^4 \text{ at } 95\% \text{ C.L.} \end{aligned}$$

