New physics searches via FCNC b → s II decays at ATLAS

Marcella Bona (QMUL) on behalf of the ATLAS Collaboration

> UK Flavour Workshop Durham, UK September 5th, 2017

B physics in ATLAS

very limited (wo)man power

but a good variety of analyses

recent results on indirect new physics searches:

• width difference $\Delta\Gamma_{\rm d}/\Gamma_{\rm d}$:

- JHEP 1606 (2016) 081, arXiv:1605.07485
- In the provide on the provide a structure in the provided HTML and μ⁺μ[−].
 - EPJ C76 (2016) 513, arXiv:1604.04263
- ightarrow semi-rare B decays: B → K^{*} μ⁺μ⁻:
 - ATLAS-CONF-2017-023
- Time-dependent angular analysis in $B_s \rightarrow J/\psi \phi$:
 - prospects

width difference $\Delta\Gamma_d/\Gamma_d$

JHEP 1606 (2016) 081, arXiv:1605.07485

B_d lifetime difference

Experimental sensitivity still below SM predictions

 $\Delta \Gamma_{\rm d} / \Gamma_{\rm d} \, ({\rm SM}) = (0.42 \pm 0.08) \times 10^{-2}$

 $\Delta\Gamma_{\rm d}/\Gamma_{\rm d}~({\rm WA})=(0.1~\pm~1.0)\times10^{-2}$

New physics could still hide in $\Delta\Gamma_{d}/\Gamma_{d}$

 Increased precision and complementing measurement methods important

• ATLAS measurement: L = 25.2 fb⁻¹, \sqrt{s} = 7, 8 TeV

 \bullet Decay rate difference for light/heavy eigenstates shows $\Delta\Gamma_{\rm d}/\Gamma_{\rm d}$ dependency

• Measured through relative ratio of B_d decays to $J/\psi K_s$ vs $J/\psi K^*(892)$

Method

• Untagged time-dependent $B \rightarrow f$ decay rate depends on f:

$$\Gamma[t, f] \propto e^{-\Gamma_q t} \left[\cosh \frac{\Delta \Gamma_q t}{2} + A_P A_{CP}^{\text{dir}} \cos(\Delta m_q t) + A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_q t}{2} + A_P A_{CP}^{\text{mix}} \sin(\Delta m_q t) \right]$$

where A_P is the particle/anti-particle production asymmetry and A^{dir}_{CP} , $A_{\Delta\Gamma}$, and A^{mix}_{CP} are well-defined for CP/flavour eigenstates

• Base measurement on comparison of $B_d \rightarrow J/\psi K_s \text{ vs } B_d \rightarrow J/\psi K^*(892)$: • $J/\psi K_s : A^{dir}_{CP} = 0, A_{\Delta\Gamma} = \cos 2\beta, A^{mix}_{CP} = -\sin 2\beta \text{ (CP-specific)}$ • $J/\psi K^*(892)$: $A^{dir}_{CP} = 1, A_{\Delta\Gamma} = 0, A^{mix}_{CP} = 0 \text{ (flavour-specific)}$

• Fit the ratio of CP/flavour eigenstates to determine $\Delta\Gamma$:

$$\frac{\Gamma[\psi K_s, t]}{\Gamma[\psi K^*, t]} = \frac{\cosh \frac{\Delta \Gamma_d t}{2} + \cos 2\beta \sinh \frac{\Delta \Gamma_d t}{2} - A_p \sin \Delta m_d t}{\cosh \frac{\Delta \Gamma_d t}{2} + A_p \cos \Delta m_d t}$$

• Can determine $\Delta\Gamma$ and A_P from data

Bona Rare B

- Signal counts are determined in bins of proper decay length
- Use 10 bins between -0.3mm and 0.6mm
- Yields determined through mass fits
- Per-bin detector acceptance taken into account

Bona Rare B decays

Determination of A_P

 Production asymmetry derived from observed time-dependent asymmetry of J/ψK*(892) candidates (omitting CP violating mixing terms):

$$\Gamma[t, \frac{B}{\overline{B}} \to J\psi K^*] = e^{-\Gamma_d t} [\cosh \frac{\Delta \Gamma_d t}{2} \pm A_p \cos \Delta m t]$$

 cτ bins are fitted: the predicted A_{exp}, need to account for detector effects (mostly tracking asymmetry for charged K):

$$A_{exp,i} = (A_{det} + A_{osc,i})(1-2w)$$

$$K - \pi \text{ mis-id } w \sim 0.12$$

$$\chi^{2} = 6.50, \text{ d.o.f} = 7$$

$$A_{det} = (1.33 \pm 0.24 \pm 0.30) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$$

$$A_{P} = (0.25$$

Determination of $\Delta\Gamma_{d}$

- Extract cτ-dependent yields for K* and K_s decays
- Fit $c\tau$ -dependency leaving $\Delta\Gamma_{\rm d}/\Gamma_{\rm d}$ as the only free parameter

rare B decays $B_{(s)} \rightarrow \mu^{+}\mu^{-}$

EPJ C76 (2016) 513, arXiv:1604.04263

ATLAS, EPJ C76 (2016) 513, arXiv:1604.04263

ATLAS study on 25 fb⁻¹ of Run 1 data

 \blacksquare measured via $B^{\pm} \rightarrow J/\psi~K^{\pm}$ normalisation channel

$$\mathcal{B}(B^0_{(s)} \rightarrow \mu^+ \mu^-) = \frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}} \times \frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}} \times \frac{f_u}{f_{d(s)}}$$

$$imes \left[{\cal B}(B^+ o J/\psi K^+) imes {\cal B}(J/\psi o \mu^+\mu^-)
ight]$$

ATLAS study on 25 fb⁻¹ of Run 1 data

 \blacksquare measured via $B^{\scriptscriptstyle\pm} \to J/\psi~K^{\scriptscriptstyle\pm}$ normalisation channel

$$\mathcal{B}(B^0_{(s)} \rightarrow \mu^+ \mu^-) = \frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}} \times \frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}} \times \frac{f_u}{f_{d(s)}}$$

$$imes \left[{\cal B}(B^+ o J/\psi K^+) imes {\cal B}(J/\psi o \mu^+\mu^-)
ight]$$

ATLAS, EPJ C76 (2016) 513,

arXiv:1604.04263

correction for the efficiencies of the two channels

ATLAS study on 25 fb⁻¹ of Run 1 data

 ${\color{black}\bullet}$ measured via $B^{\scriptscriptstyle\pm} \to J/\psi~K^{\scriptscriptstyle\pm}$ normalisation channel

$$\mathcal{B}(B^0_{(s)} \rightarrow \mu^+ \mu^-) = \frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}} \times \frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}} \times \frac{f_u}{f_{d(s)}}$$

$$\times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right]$$

ATLAS, EPJ C76 (2016) 513,

arXiv:1604.04263

- correction for the efficiencies of the two channels
- correction for the different hadronisation probabilities for B^0_s and B^0 vs B^{\pm}
- include the B[±] and J/ ψ branching fractions

ATLAS study on 25 fb⁻¹ of Run 1 data

 ${\color{black}\bullet}$ measured via $B^{\scriptscriptstyle\pm} \to J/\psi~K^{\scriptscriptstyle\pm}$ normalisation channel

$$\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-) = \frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}} \times \frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}} \times \frac{f_u}{f_{d(s)}}$$

$$\times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right]$$

ATLAS, EPJ C76 (2016) 513,

arXiv:1604.04263

- correction for the efficiencies of the two channels
- correction for the different hadronisation probabilities for B^0_s and B^0 vs B^{\pm}
- include the B[±] and J/ ψ branching fractions
- formula modified to take into account four trigger/data categories

Modified formula

- formula modified to take into account the three trigger categories and 2011 data
 - normalisation channel yield evaluated in each trigger and data category
 - same for the efficiency ratio

$$\begin{split} \mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-) = & N_{d(s)} \times \frac{f_u}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{\text{norm}}} \\ & \times \begin{bmatrix} \mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi K^+) \end{bmatrix} \end{split}$$

$$\mathcal{D}_{ ext{norm}} = \sum_k N^k_{J/\psi K^+} lpha_k \left(rac{arepsilon_{\mu^+\mu^-}}{arepsilon_{J/\psi K^+}}
ight)_k$$

index k runs on the trigger and data categories

 \circ α_k takes into account the prescaling factors

Bona Rare B decays $ightarrow \mu^+ \mu$

Background contributions

In order of relative magnitude:

combinatorial background from opposite-side muons

- one real muon and a charged hadron.
- peaking background from charmless hadronic B_(S) decays:
 - B decays into two hadrons h (kaons and pions): $B^{0}_{(S)} \rightarrow hh'$
 - smaller component, but overlays with the signal in dimuon invariant mass

Fake-BDT against hadron misidentification

- studied on simulated samples of B \rightarrow hh', signal B $\rightarrow \mu\mu$, and $\Lambda_b \rightarrow$ ph
- validated with data from $\phi \to KK$ and $B^{\pm} \to J/\psi K^{\pm}$ decays.
- negligible misidentification of protons (< 0.01%) </p>
- misidentification is 0.28%(0.12%) for $K(\pi)$.

reduced by 0.4 with a dedicated *fake-BDT* with efficiency of prompt muons set at 95%

peaking-background events: 1.0±0.4

Mass of two misidentified muons [MeV]

Continuum-BDT against combinatorial bkg

- MVA classifier used to discriminate from signal trained on MO complete and tested on
- trained on MC samples and tested on mass sidebands
- 15 variables related to properties of B
 candidates, muons from the B decay, other tracks^{0.04}
 from the same collision and to pile-up vertices.

Normalisation B yield extraction

Efficiency ratio $\epsilon_{\mu\mu}/\epsilon_{J/\psi K}$

efficiency ratio from MC

Bona Rare B

decays

- systematic uncertainty from data-MC discrepancies
- For B^0_s : correction for lifetime difference of the B^0_s mass eigenstates:

Total systematic uncertainty $\pm 5.9\%$ on the normalisation term D_{norm}

Prospect on rare B decays $B_{(s)} \rightarrow \mu^{+}\mu^{-}$

 Latest result available based on full Run 1 statistics
 Result is statistically limited: expect sensitivity to essentially scale with statistics

 Topological triggers exploited in Run 2 to maintain signal data taking efficiency

Angular analysis on $B \rightarrow K^* \mu \mu$

ATLAS-CONF-2017-023

Angular analysis on B \rightarrow K^{*}µµ

- another way to look at FCNC
 - occurs through a b \rightarrow s transition with a BR ~ 1.1 10⁻⁶
- angular distribution of the 4 particles in the final state sensitive to new physics for the interference of NP and SM diagrams

- decay described by three angles $(\theta_L, \theta_K, \phi)$ and the di-muon mass squared $q^2 \rightarrow$ the angular distribution is analysed in finite bins of q^2 as a function of θ_L , θ_K and ϕ .
- \bigcirc LHCb reports a 3.4 σ deviation from the SM.

JHEP 02 (2016) 104 arXiv:1512.04442

Angular analysis on B \rightarrow K^{*}µµ at ATLAS

angular distribution given by:

ATLAS-CONF-2017-023

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \bigg[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_\ell -F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi +S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell +S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi +S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \bigg].$$

- ATLAS uses trigonometric relations to reduce the problem into 4 sets of fits for three parameters (F_L, S₃ and S_j with j=4,5,7,8) for each q² bin.
- the S parameters are translated into the P⁽⁾ parameters via

$$P_1 = \frac{2S_3}{1 - F_L} \qquad P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}$$

 the P⁽⁾ parameters are expected to have a reduced dependence on the hadronic form factors.

Analysis strategy for B \rightarrow K^{*}µµ at 8 TeV

- Data collected in 2012 at 8 TeV with 20.3 fb⁻¹ data
- \bigcirc Measured in 6 (overlapping) bins of q² in the range [0.04, 6] GeV²
- Selection of triggers with muon p_T thresholds starting at 4 GeV
- K* tagged by the kaon sign:
 - one candidate per event selected
 - olition from mistag probability included in (1-2<w>):
 - \sim <w> ~ 10.9(1)% with small dependence on q²
- 787 events selected with q² < 6 GeV²
- → Vetoed [0.98, 1.1] GeV² region to exclude $\phi(1020)$
- Extended unbinned maximum likelihood fits in each of the fit variants in each q² bin:
 - two step fit procedure: first fit the invariant mass distribution
 - \bigcirc then add to the fit the angular distributions to extract the F_{L} and S(P) parameters
- Signal shape studies from control samples K^*J/ψ and $K^*\psi(2S)$
- Ombinatorial background extracted in the fit, others in syst.

Fit projections

 Fit m(K*µµ), cosθ_L, cosθ_K and φ to isolate signal and extract parameters of interest.

- Data shown for [0.04,2.0] GeV²
- projections for the S₅ fit.
- Approx 106-128 signal events in 2 GeV² q² bin.
- Similar results for the other q² bins and other fit variants.

Rare B decays

Results from the fits

$q^2 \; [{\rm GeV}^2]$	$n_{ m signal}$	$n_{ m background}$
[0.04, 2.0]	128 ± 22	122 ± 22
[2.0, 4.0]	106 ± 23	113 ± 23
[4.0, 6.0]	114 ± 24	204 ± 26
[0.04, 4.0]	236 ± 31	233 ± 32
[1.1, 6.0]	275 ± 35	363 ± 36
[0.04, 6.0]	342 ± 39	445 ± 40

signal and background yields from the first fit step

Results obtained are generally statistically limited:

$q^2 \; [{\rm GeV}^2]$	F_L	S_3	S_4	S_5	S_7	S_8
[0.04, 2.0]	$0.44 \pm 0.08 \pm 0.07$	$-0.02 \pm 0.09 \pm 0.02$	$0.19 \pm 0.25 \pm 0.10$	$0.33 \pm 0.13 \pm 0.06$	$-0.09 \pm 0.10 \pm 0.02$	$-0.11 \pm 0.19 \pm 0.07$
[2.0, 4.0]	$0.64 \pm 0.11 \pm 0.05$	$-0.15 \pm 0.10 \pm 0.07$	$-0.47 \pm 0.19 \pm 0.10$	$-0.16 \pm 0.15 \pm 0.05$	$0.15 \pm 0.14 \pm 0.09$	$0.41 \pm 0.16 \pm 0.15$
[4.0, 6.0]	$0.42 \pm 0.13 \pm 0.12$	$0.00 \pm 0.12 \pm 0.07$	$0.40 \pm 0.21 \pm 0.09$	$0.13 \pm 0.18 \pm 0.07$	$0.03 \pm 0.13 \pm 0.07$	$-0.09 \pm 0.16 \pm 0.04$
[0.04, 4.0]	$0.52 \pm 0.07 \pm 0.06$	$-0.05 \pm 0.06 \pm 0.04$	$-0.19 \pm 0.16 \pm 0.09$	$0.16 \pm 0.10 \pm 0.04$	$0.01 \pm 0.08 \pm 0.05$	$0.15 \pm 0.13 \pm 0.10$
[1.1, 6.0]	$0.56 \pm 0.07 \pm 0.06$	$-0.04 \pm 0.07 \pm 0.03$	$0.03 \pm 0.14 \pm 0.07$	$0.00 \pm 0.10 \pm 0.03$	$0.02 \pm 0.08 \pm 0.06$	$0.09 \pm 0.11 \pm 0.08$
[0.04, 6.0]	$0.50 \pm 0.06 \pm 0.04$	$-0.04 \pm 0.06 \pm 0.03$	$0.03 \pm 0.13 \pm 0.07$	$0.14 \pm 0.09 \pm 0.03$	$0.02 \pm 0.07 \pm 0.05$	$0.05 \pm 0.10 \pm 0.07$

$q^2 \; [{ m GeV}^2]$	P_1	P_4'	P_5'	P_6'	P'_8
[0.04, 2.0]	$-0.06 \pm 0.30 \pm 0.10$	$0.39 \pm 0.51 \pm 0.25$	$0.67 \pm 0.26 \pm 0.16$	$-0.18 \pm 0.21 \pm 0.04$	$-0.22 \pm 0.38 \pm 0.14$
[2.0, 4.0]	$-0.78 \pm 0.51 \pm 0.42$	$-0.96 \pm 0.39 \pm 0.26$	$-0.33 \pm 0.31 \pm 0.13$	$0.31 \pm 0.28 \pm 0.19$	$0.84 \pm 0.32 \pm 0.31$
[4.0, 6.0]	$0.00 \pm 0.47 \pm 0.26$	$0.81 \pm 0.42 \pm 0.24$	$0.26 \pm 0.35 \pm 0.17$	$0.06 \pm 0.27 \pm 0.13$	$-0.19 \pm 0.33 \pm 0.07$
[0.04, 4.0]	$-0.22 \pm 0.26 \pm 0.16$	$-0.38 \pm 0.31 \pm 0.22$	$0.32 \pm 0.21 \pm 0.10$	$0.01 \pm 0.17 \pm 0.10$	$0.30 \pm 0.26 \pm 0.19$
[1.1, 6.0]	$-0.17 \pm 0.31 \pm 0.14$	$0.07 \pm 0.28 \pm 0.18$	$0.01 \pm 0.21 \pm 0.07$	$0.03 \pm 0.17 \pm 0.11$	$0.18 \pm 0.22 \pm 0.16$
[0.04, 6.0]	$-0.15 \pm 0.23 \pm 0.10$	$0.07 \pm 0.26 \pm 0.18$	$0.27 \pm 0.19 \pm 0.07$	$0.03 \pm 0.15 \pm 0.10$	$0.11 \pm 0.21 \pm 0.14$

Bona

Rare B decays

Systematic uncertainties

Main systematic uncertainties come from backgrounds:

- \circ cos θ_{K} ~ 1 peaking component:
 - B → K/π µµ + X and combinatoric Kπ (fake K*)
 - \bigcirc veto on three-body mass or $\cos\theta_{K}$ cut
- $|\cos\theta_L| \sim 0.7$ peaking component:
 - \bigcirc partially reconstructed B \rightarrow D \rightarrow X decays
 - veto around the charmed meson masses.
- background shape choice
- acceptance functions, alignment and B-field calibration
- S-wave contributions (~5%) result in a small systematic error.
- Other backgrounds from exclusive mode neglected in the fit are included and the systematic uncertainty assessed
- ightarrow F_L: largest systematic from $\cos\theta_{K}$ and $\cos\theta_{L}$, backgrounds: 0.11
- S_j: systematics also from background uncertainties: 0.01-0.13

Angular analysis on B \rightarrow K^{*}µµ at 8 TeV

Results are compatible with theoretical calculations & fits:

Angular analysis on B \rightarrow K^{*}µµ at 8 TeV

 \bigcirc Deviations of about 2.5 σ (2.7 σ) from DHMV in P'₄(P'₅) in [4,6] GeV²

Time-dependent angular analysis on $B_s \to J/\psi \phi$

JHEP 08 (2016) 147, arXiv:1601.03297

Time-dependent angular analysis of $J/\psi\phi$

- Time-dependent angular analysis
 BLUE method used to combine 2011/2012 results
 - Combination is statistically limited
 - Precision determined by cτ resolution
- No new result approved yet
 Run 2 dataset collection continues with comparable efficiency
 Expect extrapolation to scale essentially with luminosity
 Cτ resolution improvement from IBL in Run 2 will improve effective tagging dilution by x4

201

Conclusions

- B_d width difference extracted on Run 1 $\Delta\Gamma_d/\Gamma_d = (-0.1 \pm 1.4) \times 10^{-2}$
- Run 1 study on rare B decays into muons

$$\begin{split} & \mathsf{B}(\mathsf{B}^{0}{}_{\mathsf{S}} \to \mu^{+}\mu^{-}) = 0.9^{+1.1}_{-0.8} \times 10^{-9} \\ & \mathsf{B}(\mathsf{B}^{0} \to \mu^{+}\mu^{-}) < 4.2 \times 10^{-10} \text{ at } 95\% \text{ CL} \end{split}$$

- B to K*µµ angular analysis on 20 fb⁻¹ of 8 TeV data with better background understanding and improved fit strategy
 - still statistically limited
 - results in agreement with predictions and fits.

B physics in ATLAS is healthily challenging and very much alive.

back-up slides

Systematic table for $K^*\mu\mu$ angular analysis

Source	F_L	S_3	S_4	S_5	S_7	S_8
Combinatoric $K\pi$ (fake K^*) background	0.03	0.03	0.05	0.03	0.06	0.13
$D \text{ and } B^+ \text{ veto}$	0.11	0.04	0.05	0.03	0.01	0.05
Background p.d.f. shape	0.04	0.04	0.03	0.02	0.03	0.01
Acceptance function	0.01	0.01	0.07	0.01	0.01	0.01
Partially reconstructed decay background	0.03	0.05	0.02	0.06	0.05	0.05
Alignment and B field calibration	0.02	0.04	0.05	0.03	0.04	0.03
Fit bias	0.01	0.01	0.02	0.02	0.01	0.04
Data/MC differences for p_T	0.02	0.02	0.01	0.01	0.01	0.01
S-wave	0.01	0.01	0.01	0.01	0.01	0.02
Nuisance parameters	0.01	0.01	0.01	0.01	0.01	0.01
Λ_b, B^+ and B_s background	0.01	0.01	0.01	0.01	0.01	0.01
Misreconstructed signal	0.01	0.01	0.01	0.01	0.01	0.01
Dilution	_	_	0.01	0.01	_	_

CMS and LHCb.

Previous and latest results

Bona Rare B

Normalisation B yield extraction

- applied fake-BDT and continuum-BDT selections (optimised for signal)
- yields extracted separately in the 4 categories: three trigger categories for 2012 and 2011 data
- \bigcirc unbinned maximum likelihood fit of the invariant mass $m_{J/\psi K} \rightarrow m_{\mu\mu K}$
- measurement of J/ $\psi\pi$ over J/ ψ K ratio $\rho_{\pi/K}$ = 0.035 ± 0.003 ± 0.012

Efficiency ratio $\epsilon_{\mu\mu}/\epsilon_{J/\psi K}$

$$\mathcal{D}_{ ext{norm}} = \sum_k N^k_{J/\psi K^+} lpha_k \left(rac{arepsilon_{\mu^+\mu^-}}{arepsilon_{J/\psi K^+}}
ight)_k$$

- in each category (k) the efficiency ratio is obtained from MC
- p_T and η MC spectra are tuned on data from the reference channels:
- ${\color{black} \bullet}$ residual trigger efficiency differences from tag&probe studies on J/ ψ and Y
- systematic uncertainty from data-MC discrepancies: assessed from the data-MC comparisons of the discriminating variables used in the continuum-BDT: dominant systematic contribution to D_{norm}
 - isolation requires tuning in the B[±] mode:
 - central value of the efficiency ratio corrected with this tuning
- For B⁰_S:
 - correction for lifetime difference between the B⁰_S mass eigenstates: lifetime from SM prediction and efficiency correction (+4%) from MC

Total correction to the central value of the efficiency ratio: +3% for B⁰ and -1% for B⁰s (including the lifetime correction) Total systematic uncertainty ±5.9% on the normalisation term D_{norm}

Fake-BDT against hadron misidentification

- studied on simulated samples of B \rightarrow hh', signal B $\rightarrow \mu\mu$, and $\Lambda_b \rightarrow$ ph
- validated with data from $\phi \to KK$ and $B^{\pm} \to J/\psi K^{\pm}$ decays.
- negligible probability of misidentification of protons (< 0.01%)</p>
- probability of misidentification is about 0.28% for kaons and 0.12% for pions.

reduced of 0.4 with a dedicated *fake-BDT* with efficiency of prompt muons set at 95%

Use $B^{\pm} \rightarrow J/\psi K^{\pm}$ yield and efficiency ratio to normalise $B \rightarrow hh'$ (like for the signal): the total number of peaking-background events feeding into our events is 1.0 ± 0.4

Continuum-BDT against combinatorial bkg

 combinatorial background: muon pairs from uncorrelated decays of hadrons produced in hadronisation of b and b quarks (or c and c quarks).
 separated from signal with a MVA classifier:

I5 variables related to the B candidate, to the muons from the B, to the other tracks from the same collision and to pile-up vertices.

training of the continuum-BDT done on a large MC sample of uncorrelated b (c) and b (c) hadrons with forced decays into final states containing muons: 1.4G MC events
tested on high-mass sideband data: not perfect data-MC agreement, but sample good enough for training, which is the sole use of this sample.

 B-related backgrounds behave like signal: SS-SV, semileptonic decays, peaking background

Signal yield extraction

- signal yields (N_d and N_s) extracted with a unbinned maximum likelihood fit to the dimuon invariant mass distribution
- fit performed simultaneously in the categories corresponding to three continuum-BDT bins with constant signal efficiency (18%)

Dimuon mass [MeV]

- signal: two Gaussian distributions with common mean, shape constrained across continuum-BDT bins and fixed to the MC shapes, varied for systematic uncertainty
- SS-SV background: exponential distribution, parameters floated in the fit, shape constrained across the continuum-BDT bins, independent normalisations.
- peaking background: two Gaussian distributions constrained across continuum-BDT bins and fixed to the MC shapes, normalisation fixed to 1.0±0.4 total events
- continuum background: first order polynomial, parameters floated, shape loosely constrained across the continuum-BDT bins, independent normalisations
- systematics obtained by varying all the above:

 σ_{syst} (N_S) = $\sqrt{2^2}$ + (0.06 × N_S)² and σ_{syst} (N_d) = 3 events

Branching fraction extraction

$$\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-) = N_{d(s)} \times \frac{f_u}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{\text{norm}}}$$

$$imes \left[{\cal B}(B^+ o J/\psi K^+) imes {\cal B}(J/\psi o \mu^+ \mu^-)
ight]$$

$$\mathcal{D}_{\mathrm{norm}} = \sum_k N^k_{J/\psi K^+} lpha_k \left(rac{arepsilon_{\mu^+\mu^-}}{arepsilon_{J/\psi K^+}}
ight)_k$$

The normalization includes:

- B[±] branching fraction (world averages)
- the fragmentation fraction f_u/f_s from the ATLAS measurement of f_s/f_d performed in the same p_T , η range: 0.240 ± 0.020 (8% systematic)
- the efficiency ratios and B[±] yields in the D_{norm} term
- The total uncertainty in the normalisation is
 - ±11% for BR(B⁰_S $\rightarrow \mu^+\mu^-$)
 - ± 7% for BR(B⁰ $\rightarrow \mu^+\mu^-$)

Bona Rare B decays (2015) 262001 /f_d

ATLAS

PRL 115

Result for the B^{0}_{s} branching fraction

- central value obtained with non-negative branching fractions
- the errors obtained by a frequentist belt, using pseudo-MC experiments and include both statistic and systematic uncertainties.
- the systematic uncertainty is

• $\sigma_{syst} = \pm 0.3 \times 10^{-9}$

$$B(B^{0}_{s} \rightarrow \mu^{+}\mu^{-}) = 0.9^{+1.1}_{-0.8} \times 10^{-9}$$

the upper limit @ 95% CL from CLs is
 B(B⁰_S → μ⁺μ⁻) < 3.0 × 10⁻⁹
 the observed compatibility with the null hypothesis (only background) has

the expectation for a SM signal is

• p = 0.0011 (3.1σ)

Result for the B⁰ branching fraction

upper limit set using CLs technique

 $B(B^{0} \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}) < 4.2 \times 10^{\scriptscriptstyle -10}$ at 95% CL

- no signal, $B(B^0{}_S \rightarrow \mu^+\mu^-)$ left free to be determined in the fit
- CL_b is ≈ 0.15 for $B(B^0 \rightarrow \mu^+\mu^-)$ near 0:

-1σ fluctuation of background

- expected limit < 5.7 $^{+2.1}_{-1.2} \times 10^{-10}$
- limit is higher than the SM prediction
 B(B⁰)_{SM} =(1.06 ± 0.09)×10⁻¹⁰
- expected significance for $B(B^0 \rightarrow \mu^+\mu^-)$ assuming the SM branching fraction is 0.2 σ

Continuum-BDT bins

Total systematics on the BR extraction

	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-)$			
Scale uncertainties					
$\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu\mu)$ branching fractions	3.1%	3.1%			
$B^{0}_{(s)}/B^{+}$ production ratio	8.3%	0			
B^+ yield and $B^0_{(s)}/B^+$ efficiency ratio	5.9%	5.9%			
Relative efficiency of continuum-BDT intervals	9%	9%			
Signal and background model	6%	0			
Total scale uncertainty	16%	11%			
Offset uncertainties					
Signal and background model	0.2×10^{-9}	0.7×10^{-10}			

Normalisation B yield extraction:

- yields extracted separately in the 4 categories: three trigger categories for 2012 and 2011 data
- ${\color{black} \bullet}$ unbinned maximum likelihood fit of the invariant mass $m_{J/\psi K} \rightarrow m_{\mu\mu K}$
- detailed study on partially reconstructed decays (PRD)

Bona

Bona

decays

Bona

Ratio of b fragmentation fractions f_s/f_d

Final measurement:

ATLAS, PRL 115,

$f_s/f_d = 0.240 \pm 0.004(stat) \pm 0.010(sys) \pm 0.017(th)$ 262001 (2015),

- Uses pQCD calculation of branching fractions ratio [arXiv:1309.0313]
- Measurement in p_T and pseudorapidity intervals: no visible dependence
- Results compared to previous experimental results
 - \rightarrow historical tension between LEP/CDF
- Good agreement with recent LHCb results. Improving the world average
- Fundamental input for the rare decay $B_s \rightarrow \mu^+ \mu^-$

