Quark mass determinations on the lattice

Andrew Lytle (HPQCD Collaboration) University of Glasgow

> Flavour UK 04.09.17 IPPP Durham

- Quark masses fundamental parameters of the Standard Model.
- Many applications to phenomenology and BSM physics. Example: Higgs partial widths.
 - Couplings proportional to quark masses.
 - Main source of uncertainty in partial [1404.0319] widths from m_b, m_c, α_s.
- Focus on precision charm results by HPQCD collaboration via two different methods.

Outline

- Background
 - ▶ Theory background.
 - ▶ Lattice determinations.
- Current-current correlator method
 - ▶ Time moments of $\langle JJ \rangle$ correlators.
 - ▶ Comparison with perturbation theory.
- Regularisation Invariant (RI) methods
 - Summary of method.
 - Results and comparison to $\langle JJ \rangle$ method.
- Summary & Conclusions

- Quarks are not asymptotic (physical) states.
- Quark masses are scheme and scale dependent, $m_a^{\text{scheme}}(\mu)$.
- Generally will quote results $m_q^{\overline{\text{MS}}}(\mu_{\text{ref}})$.

Bare quark masses are input parameters to lattice simulations. These parameters are tuned to reproduce physical quantities, e.g.

- $m_{ud0} \rightarrow m_{\pi}^2$
- $m_{s0} \rightarrow m_K^2$
- $m_{c0} \rightarrow m_{\eta_c}$

Tuning performed at multiple lattice spacings, defining a continuum trajectory for which $a^2 \rightarrow 0$ limit can be taken.

- Rest of physics is then prediction of QCD.
- Parameters can be varied away from physical values.. understand effect of quark mass, quantify systematics, etc.

Meson masses – summary plot

$\langle JJ\rangle\text{-correlator}$ method

Heavy quarks are challenging to simulate.

- Requires $am_0 < 1$ to keep discretization effects under control.
- Need large enough box to minimize finite-volume effects $\rightarrow N_{\rm site}$ large.

These conditions can be satisfied by using a highly improved action (e.g. HISQ).

HISQ action

- No $\mathcal{O}(a^2)$ discretization errors (begin at $\mathcal{O}(\alpha_s a^2)$).
- Significant $\mathcal{O}(\alpha_s a^2)$ effects are in turn suppressed.

$n_f = 4$ simulations

- Charm quarks in the sea.
- Avoid applying perturbation theory at m_c (matching $n_f = 4 \rightarrow 3$).

It is increasingly feasible to simulate the b quark relativistically.

Calculate time-moments of $J_5 \equiv \bar{\psi}_h \gamma_5 \psi_h$ correlators:

$$G(t) = a^6 \sum_{\mathbf{x}} (am_{0h})^2 \langle J_5(t, \mathbf{x}) J_5(0, 0) \rangle$$

• Currents are absolutely normalized (no Zs required).

•
$$G(t)$$
 is UV finite $\rightarrow G(t)_{\text{cont}} = G(t)_{\text{latt}} + \mathcal{O}(a^2).$

The time-moments $G_n = \sum_t (t/a)^n G(t)$ can be computed in perturbation theory. For $n \ge 4$,

$$G_n = \frac{g_n(\alpha_{\overline{\mathrm{MS}}}, \mu)}{am_h(\mu)^{n-4}}$$

Basic strategy:

- 1. Calculate $G_{n,\text{latt}}$ for a variety of lattice spacings and m_{h0} .
- 2. Compare continuum limit $G_{n,\text{cont}}$ with $G_{n,\text{pert}}$ (at reference scale $\mu = m_h$, say).
- 3. Determine best-fit values for $\alpha_{\overline{\text{MS}}}(m_h), m_h(m_h)$.

In practice comparison carried out using reduced moments.

$$R_4 = G_4 / G_4^{(0)}$$

$$R_n = \frac{1}{m_{0c}} (G_n / G_n^{(0)})^{1/(n-4)} \quad (n \ge 6) \,.$$

On the perturbative side,

$$\begin{split} R_4 &= r_4(\alpha_{\overline{\mathrm{MS}}}, \mu) \\ R_n &= \frac{1}{m_c(\mu)} \, r_n(\alpha_{\overline{\mathrm{MS}}}, \mu) \quad (n \geq 6) \,. \end{split}$$

Reference scale is taken as $\mu = 3m_h (= m_c \frac{m_{h0}}{m_{c0}}).$

- Calculate moments for n = 4, 6, 8, 10.
- Three lattice spacings: $a \approx 0.12, 0.09, 0.06$ fm. (MILC)
- Seven input masses from $m_h = m_c 0.7 m_b$.

All data points fit simultaneously with perturbative R_n expressions $\rightarrow m_c^{\overline{\text{MS}}}(\mu)$, $\alpha_{\overline{\text{MS}}}(\mu)$ for $\mu \approx 3-9$ GeV.

Results for $n_f = 4$ [1408.4169]

$$m_c(3m_h) = \frac{r_n(\alpha_{\overline{\mathrm{MS}}}, \mu = 3m_h)}{R_n}$$

- Discretization effects grow with am_h and decrease with n.
- Grey band shows best-fit $m_c(3m_c)$ evolved perturbatively.

 $m_c^{\overline{\text{MS}}}(3 \text{ GeV}) = 0.9851(63) \text{ GeV}$

 (m_z)

HPQCD $\langle JJ \rangle$ result:

- $\alpha_s^{\overline{\mathrm{MS}}}(m_Z) = 0.1182(7)$
- Agrees with $n_f = 3$ result.
- Agrees well with world average.

Non-perturbative renormalisation (NPR)

Trying to determine $Z_m^{\overline{\text{MS}}}(\mu, 1/a)$ st

$$m^{\overline{\mathrm{MS}}}(\mu) = Z_m^{\overline{\mathrm{MS}}}(\mu, 1/a) \, m_0$$

Options:

- Lattice perturbation theory. difficult!
- Alternatively, use two steps: latt \leftrightarrow intermediate(continuum-like) $\leftrightarrow \overline{\text{MS}}$

General idea is to renormalize operators using a scheme that is well-defined both in the continuum and on the lattice, e.g. the RI schemes:

Calculate off-shell Green's functions of operator-of-interest with external quark states.

$$G_{\Gamma}^{ij}(p) = \langle q^{i}(p) \left(\sum_{x} \bar{q}(x) \Gamma q(x) \right) \bar{q}^{j}(-p) \rangle_{\text{amp}}$$

Require that the trace of the renormalized operator takes its tree-level value:

$$\Lambda_{\Gamma}(p) \equiv \frac{1}{12} \operatorname{Tr} \left[\Gamma \, G_{\Gamma}(p) \right] \simeq \frac{Z_q(p)}{Z_{\Gamma}(p)}$$

The RI (and $\overline{\text{MS}}$) schemes satisfy $Z_m = Z_S^{-1} = Z_P^{-1}$. Z_m can be extracted from the scalar correlator provided

 $\Lambda_{\rm QCD} \ll |p| \ll \pi/a$

After determining $Z_m^{RI}(p)$, a perturbative calculation can be used to convert $Z^{\overline{\text{MS}}}(p) = C^{\overline{\text{MS}} \leftarrow RI}(p) Z_m^{RI}(p)$.

RI/SMOM scheme

• Momentum flow suppresses infrared effects. $p_1^2 = p_2^2 = (p_1 - p_2)^2$

•
$$p_1 \sim (x, x, 0, 0),$$

 $p_2 \sim (0, x, x, 0)$ for
 $x = 2, 3, 4$

- Other advantages:
 - Reduced mass dependence.
 - SMOM $\rightarrow \overline{\text{MS}}$ matching factors closer to 1.

 $Z_S - Z_P$

Z_m chiral extrapolation

Continuum extrapolations

Continuum extrapolations

Summary

- Accurate determinations of quark masses are of fundamental importance for (B)SM physics.
- LQCD simulations provide an effective and controlled way to determine quark masses.
 - ▶ Systematically improveable.
 - ▶ Multiple complementary approaches \rightarrow assess systematics, check consistency.
- Reviewed HPQCD results via two alternative methods.
 - \blacktriangleright Compare time moments of $\langle JJ\rangle\text{-correlators}$ to perturbation theory.
 - ► Renormalise scalar operator directly on lattice in RI/SMOM scheme + perturbative matching step to MS. (preliminary)
- Results from these methods at present achieve 1–2% precision and are in good agreement.