Flavour BSM

Ben Gripaios

Cambridge

September 2017

◆□▶ ◆舂▶ ★≧▶ ★≧▶ = 逆 - めへぐ

Focus on just 1 particular scenario

Focus on just 1 particular scenario ...

- ... which illustrates the general picture:
 - 1. flavourful BSM unlikely to be around the corner (LHC, FC, ...)

<ロト <回ト < 国ト < 国ト = 国

2. but if it is, we are likely to learn a lot!

m

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Experiment: *B* to *K* anomalies Theory: leptoquarks in composite higgs models

BMG, Marco Nardecchia & Sophie Renner, 1412.1791

BMG, 0910.1789

(ロ)、(型)、(E)、(E)、 E) のQの

RECEIVED: October 20, 2009 REVISED: January 11, 2010 ACCEPTED: January 21, 2010 PUBLISHED: February 10, 2010

イロト イヨト イヨト イヨト

크

Composite leptoquarks at the LHC

Ben Gripaios

CERN PH-TH, Geneva 23, 1211 Switzerland

There are also interesting possibilities for the observation of leptoquark-mediated rare processes, including $B \to K\mu\overline{\mu}$, $\mu \to e\gamma$, $\tau \to \mu\gamma$, and $\mu - e$ conversion in nuclei, where my estimates for the leptoquark couplings, which may be considered as rough theoretical lower bounds, lie close to experimental upper bounds, either actual or envisaged. 5 motivations ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

1. \exists a light scale/scalar, $H \dots$

1. \exists a light scale/scalar, $H \dots$

... suggesting compositeness c.f. $H^0, \pi^{\pm,0}$

(but EWPT, LHC, and FCNC all suggest some tuning; we'll take $m_{\rho} \sim 10 \text{ TeV}$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

2. the composite sector yields fermion masses ...

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

2. the composite sector yields fermion masses ...

... a bilinear coupling to SM fermions, Hqu, is at best marginal:

$$\mathscr{L} \sim \frac{Hqu}{\Lambda^{d-1}} + \frac{qqqq}{\Lambda^2}$$

 m_t + FCNC $\implies d \leq 1.2 - 1.3$

 $d \rightarrow 1 \implies d[H^{\dagger}H] \rightarrow 2 \text{ (cf. TC: } d \sim 2-3)$

Strassler, 0309122

Luty & Okui, 0409274

Rattazzi, Rychkov & Vichi, 0807.0004

Rychkov & Vichi, 0905.2211

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

the composite sector yields fermion masses

... a linear coupling to SM fermions, $\overline{Q}q$, can be relevant and flavour problems can be decoupled!

$$\mathscr{L} \sim g_{\rho} H Q U + m_{\rho} (\overline{Q} Q + \overline{U} U) + \varepsilon^{q} g_{\rho} \overline{Q} q + \varepsilon^{u} g_{\rho} \overline{U} u$$

a.k.a partial compositeness

Kaplan, 91

<ロト <回ト < 国ト < 国ト < 国ト 三 国

3. partial compositeness \implies composite coloured fermions

cf. $\mathscr{L} \subset \varepsilon^q g_\rho \overline{Q} q$

strong dynamics charged under $SU(2) \times U(1)$ and SU(3): GUT?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

4. composite coloured fermions \implies composite coloured scalars

 $SU(3)xSU(2)xU(1): (3,2,1/6) \otimes (3,2,1/6) \subset (\overline{3},3,1/3)$

a. k. a. leptoquarks/diquarks

BMG, 0910.1789

Giudice, BMG, & Sundrum, 1105.3161

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

5. LQs can be light (e.g. PNGBs); if so give peculiarly large effects (in e.g. $B \rightarrow K \mu \mu$)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Predictions ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Can we fit the $B \rightarrow K \mu \mu$ (and all other FCNC) data?

BMG, Marco Nardecchia & Sophie Renner, 1412.1791

Need the right light LQ state Need the right LQ couplings Make the LQ a PNGB, e.g. $\frac{SO(9) \times SO(5)}{SU(4) \times SU(2)_{\Pi} \times SU(2)_{H} \times SU(2)_{R}}$ NGBs: 36 + 10 - 15 - 3 - 3 - 3 = 2x2 + 2x3x3

take the LQ mass *M* to be a free parameter (\sim TeV).

<ロト <回ト < 国ト < 国ト < 国ト 三 国

Quark sector:

10 parameters: $g_{\rho}, \varepsilon_i^{q,u,d}$ 9 quark masses and mixings fix all but g_{ρ} and ε_3^q :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $(Y_u)_{ij} \sim g_\rho \epsilon_i^q \epsilon_j^u, \qquad (Y_d)_{ij} \sim g_\rho \epsilon_i^q \epsilon_j^d.$

$$g_{\rho}v\epsilon_{i}^{q}\epsilon_{i}^{u} \sim m_{i}^{u}, \qquad g_{\rho}v\epsilon_{i}^{q}\epsilon_{i}^{d} \sim m_{i}^{d}$$
$$\frac{\epsilon_{1}^{q}}{\epsilon_{2}^{q}} \sim \lambda, \qquad \frac{\epsilon_{2}^{q}}{\epsilon_{3}^{q}} \sim \lambda^{2}, \qquad \frac{\epsilon_{1}^{q}}{\epsilon_{3}^{q}} \sim \lambda^{3},$$

Lepton sector:

```
6 parameters: \varepsilon_i^{l,e}
Assume \varepsilon_i^l \sim \varepsilon_i^e to minimise \mu \to e\gamma
3 charged lepton masses fix all 6
```

Leptoquark couplings:

Let $c_{ij} \sim O(1)$ parameterise our ignorance of strong dynamics $\lambda_{ij} = g_{\rho}c_{ij}\epsilon_i^{\ell}\epsilon_j^{q}$,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

$\lambda_{ij}/(c_{ij}g_{ ho}^{1/2}\epsilon_3^q)$	j = 1	j = 2	j = 3
i = 1	1.92×10^{-5}	8.53×10^{-5}	1.67×10^{-3}
i=2	2.80×10^{-4}	1.24×10^{-3}	2.43×10^{-2}
i = 3	1.16×10^{-3}	5.16×10^{-3}	0.101

LQ effects fixed by $g_{\rho} \lesssim 4\pi, \varepsilon_3^q < 1$, and $M \sim \text{TeV}$.

*R*_{*K*}:

$$\operatorname{Re}(c_{22}^*c_{23}) \in [1.42, 2.98] \left(\frac{4\pi}{g_{\rho}}\right) \left(\frac{1}{\epsilon_3^q}\right)^2 \left(\frac{M}{\operatorname{TeV}}\right)^2 \quad (\text{at } 1\sigma).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Decay	$(ij)(kl)^*$	$ \lambda_{ij}\lambda_{kl}^* /\left(rac{M}{ ext{TeV}} ight)^2$	$ c_{ij}c_{kl}^{*} \left(rac{g_{ ho}}{4\pi} ight)\left(\epsilon_{3}^{q} ight)^{2}/\left(rac{M}{ ext{TeV}} ight)^{2}$
$K_S \rightarrow e^+ e^-$	$(12)(11)^*$	< 1.0	$<4.9\times10^7$
$K_L \rightarrow e^+ e^-$	$(12)(11)^*$	$<2.7\times10^{-3}$	$< 1.3 \times 10^5$
$\dagger K_S \to \mu^+ \mu^-$	$(22)(21)^*$	$< 5.1 \times 10^{-3}$	$< 1.2 \times 10^3$
$K_L \to \mu^+ \mu^-$	$(22)(21)^*$	$< 3.6 \times 10^{-5}$	< 8.3
$K^+ \to \pi^+ e^+ e^-$	$(11)(12)^*$	$< 6.7 \times 10^{-4}$	$< 3.3 imes 10^4$
$K_L \to \pi^0 e^+ e^-$	$(11)(12)^*$	$< 1.6 \times 10^{-4}$	$<7.8\times10^3$
$K^+ \to \pi^+ \mu^+ \mu^-$	$(21)(22)^*$	$< 5.3 \times 10^{-3}$	$< 1.2 \times 10^3$
$K_L \to \pi^0 \nu \bar{\nu}$	$(31)(32)^*$	$< 3.2 \times 10^{-3}$	< 42.5
$\dagger B_d \to \mu^+ \mu^-$	$(21)(23)^*$	$< 3.9 \times 10^{-3}$	< 46.0
$B_d \to \tau^+ \tau^-$	$(31)(33)^*$	< 0.67	$<4.6\times10^2$
$\dagger \; B^+ \to \pi^+ e^+ e^-$	$(11)(13)^*$	$<2.8\times10^{-4}$	$< 6.9 \times 10^2$
$\dagger \; B^+ \to \pi^+ \mu^+ \mu^-$	$(21)(23)^*$	$<2.3\times10^{-4}$	< 2.7

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Opportunities in $B \rightarrow Kvv$ (Belle II), $K \rightarrow \pi vv$ (NA62), $\mu \rightarrow e\gamma$ (MEG), $B \rightarrow \pi \mu \mu$, Δm_{B_s} , ...

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Scenario summary:

Leptoquarks a generic prediction in partial compositeness If light, predict large effects in $B \rightarrow K\mu\mu$ Data can be fit with $M \sim \text{TeV}$, $g_{\rho} \sim 4\pi$, $\varepsilon_q^3 \sim 1$ Look at LHC, $B \rightarrow K\nu\nu$ (Belle II), $K \rightarrow \pi\nu\nu$ (NA62), $\mu \rightarrow e\gamma$ (MEG), $B \rightarrow \pi\mu\mu$, Δm_{B_s} , ...

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

General summary:

1. flavourful BSM unlikely to be around the corner (LHC, FC, ...)

2. but if it is, we are likely to learn a lot!