

Measurement of the CKM angle γ

Matthew Kenzie University of Cambridge

UK Flavour Meeting

September 6, 2017

Overview

- 1. Setup and CKM overview
- 2. Measuring γ
- 3. Combination of measurements
- 4. Status and Future Prospects (also scattered throughout)

1. Setup and CKM overview

Setup and CKM overview

2 Measuring γ

- GLW Method
- ADS Method
- GGSZ Method
- Dalitz (GW) Method

3 Combination of Measurements

CKM picture is now well verified

- Any discrepancies would be of great importance
- CKM angle γ is the *least well known* constraint

CKM picture is now well verified

- Any discrepancies would be of great importance
- CKM angle γ is the *least well known* constraint

Matthew Kenzie

UK Flavour Meeting

1. Setup and CKM overview

The Ultimate Test

- γ is a SM benchmark
 - Only CKM angle accessible at tree level
- γ is an excellent probe of new physics
 - Direct vs indirect disagreement
 - \blacktriangleright Constraints in neutral mixing require γ as input
 - New physics in $C_{1,2}$ can cause sizeable shifts in γ

The Ultimate Test

- \blacktriangleright LHCb expected precision in 2018 (end of Run 2) \sim 3-4 $^{\circ}$
- \blacktriangleright LHCb expected precision in 2023 (end of Run 3) $\sim 1.5^{\circ}$
- \blacktriangleright BelleII expected precision in 2023 (end of Run) $~\sim 1.5^{\circ}$
- \blacktriangleright LHCb expected precision in 2029 (end of Run 4) $< 1^\circ$

2. Measuring γ

Setup and CKM overview

2 Measuring γ

- GLW Method
- ADS Method
- GGSZ Method
- Dalitz (GW) Method

3 Combination of Measurements

2. Measuring γ

Measuring γ

- γ is the phase between $V_{ub}^* V_{ud}$ and $V_{cb}^* V_{cd}$
 - ▶ Require interference between $b \rightarrow cW$ and $b \rightarrow uW$ to access it
 - No dependence on CKM elements involving the top
 - Can be measured using tree level B decays
 - Makes it a benchmark of the SM (no loops)
- The "textbook" case is $B^{\pm} \rightarrow {\stackrel{(\overline{D})_0}{D}} K^{\pm}$:
 - Transitions themselves have different final states $(D^0 \text{ and } \overline{D}^0)$
 - Interference occurs when D^0 and \overline{D}^0 decay to the same final state f

Reconstruct the D^0/\overline{D}^0 in a final state accesible to both to acheieve interference

▶ The crucial feature of these (and similar) decays is that the D⁰ can be reconstructed in several different final states

UK Flavour Meeting

γ from theory

$$\gamma = \arg \left(- \frac{\textit{V}_{ud} \textit{V}_{ub}^*}{\textit{V}_{cd} \textit{V}_{cb}^*} \right)$$

- $\blacktriangleright \gamma$ is known very well
- Can be determined entirely from tree decays
 - Unique property among all CP violation parameters
 - Hadronic parameters can be determined from data
- Neglible theoretical uncertainty (Zupan and Brod 2013)

Theory uncertainty on γ

 $\delta\gamma/\gammapprox \mathcal{O}(10^{-7})$ - [arXiv:1308.5663]

- γ can probe for new physics at extrememly high energy scales (Zupan)
 - ► (N)MFV new physics scenarios: ~ O(10²) TeV
 - ▶ gen. FV new physics scenarios: $\sim O(10^3)$ TeV
- NP contributions to C_{1,2} can cause sizeable shifts (O(4°)) in γ (Brod, Lenz et. al 2014) - [arXiv:1412.1446]

γ from experiment

- γ is NOT known very well
- It is quite challenging to measure
- The decay rates are small

Branching ratio for suppressed γ mode BR(B⁻ \rightarrow DK⁻, D \rightarrow π K) \approx 2 \times 10⁻⁷

- \blacktriangleright Small interference effect typically $\sim 10\%$
- Fully hadronic decays hard to trigger on
- Many channels have a $K_{\rm S}^0$ in the final state low efficiency
- Many channels have a π^0 in the final state very hard at LHCb
- Many different decay channels, many observables and many hadronic unknowns make it statistically challenging

2.1. GLW Method

Setup and CKM overview

- ADS Method
- GGSZ Method
- Dalitz (GW) Method

3 Combination of Measurements

- ▶ CP eigenstates e.g. $D \to KK$, $D \to K_{\rm S}^0 \pi^0$ ▶
- Gronau, London, Wyler (1991)

GLW observables

- [Phys. Lett. B253 (1991) 483]
- [Phys. Lett. B265 (1991) 172]

- ▶ CP eigenstates e.g. $D \to KK$, $D \to K_{\rm S}^0 \pi^0$ ▶
- Gronau, London, Wyler (1991)

GLW observables

- [Phys. Lett. B253 (1991) 483]
- [Phys. Lett. B265 (1991) 172]

▶ LHCb has recently extracted GLW observables from partially reconstructed $B^- \rightarrow D^{*0}K^-$ in the same fit - [arXiv:1708.06370]

[Phys. Lett. B253 (1991) 483]

[Phys. Lett. B265 (1991) 172]

- CP eigenstates e.g. D o KK, $D o K_{
 m S}^0 \pi^0$
- Gronau, London, Wyler (1991)

GLW observables

$$A_{\mathcal{C}P} = \frac{\Gamma(B^{-} \to D_{\mathcal{C}P}^{0}K^{-}) - \Gamma(B^{+} \to D_{\mathcal{C}P}^{0}K^{+})}{\Gamma(B^{-} \to D_{\mathcal{C}P}^{0}K^{-}) + \Gamma(B^{+} \to D_{\mathcal{C}P}^{0}K^{+})} = \frac{\pm 2r_{B}(2F^{+}+1)\sin(\delta_{B})\sin(\gamma)}{1 + r_{B}^{2} \pm 2r_{B}(2F^{+}+1)\cos(\delta_{B})\cos(\gamma)}$$
(1)
$$R_{\mathcal{C}P} = \frac{\Gamma(B^{-} \to D_{\mathcal{C}P}^{0}K^{-}) + \Gamma(B^{+} \to D_{\mathcal{C}P}^{0}K^{+})}{\Gamma(B^{-} \to D^{0}K^{-}) + \Gamma(B^{+} \to D^{0}K^{+})} = 1 + r_{B}^{2} \pm 2r_{B}(2F^{+}+1)\cos(\delta_{B})\cos(\gamma)$$
(2)

- ▶ LHCb has recently extracted GLW observables from partially reconstructed $B^- \rightarrow D^{*0} K^-$ in the same fit [arXiv:1708.06370]
- ► Can extend to quasi-*CP*-eigenstates $(D^0 \rightarrow KK\pi^0)$ if fraction of *CP* content, F^+ , is known

- CP eigenstates e.g. D o KK, $D o K_{
 m S}^0 \pi^0$
- Gronau, London, Wyler (1991)

GLW observables

$$A_{\mathcal{P}} = \frac{\Gamma(B^{-} \to D_{\mathcal{P}}^{0}K^{-}) - \Gamma(B^{+} \to D_{\mathcal{P}}^{0}K^{+})}{\Gamma(B^{-} \to D_{\mathcal{P}}^{0}K^{-}) + \Gamma(B^{+} \to D_{\mathcal{P}}^{0}K^{+})} = \frac{\pm 2r_{B}(2F^{+}+1)\sin(\delta_{B})\sin(\gamma)}{1 + r_{B}^{2} \pm 2r_{B}(2F^{+}+1)\cos(\delta_{B})\cos(\gamma)}$$
(1)
$$R_{\mathcal{P}} = \frac{\Gamma(B^{-} \to D_{\mathcal{P}}^{0}K^{-}) + \Gamma(B^{+} \to D_{\mathcal{P}}^{0}K^{+})}{\Gamma(B^{-} \to D^{0}K^{-}) + \Gamma(B^{+} \to D^{0}K^{+})} = 1 + r_{B}^{2} \pm 2r_{B}(2F^{+}+1)\cos(\delta_{B})\cos(\gamma)$$
(2)

[Phys. Lett. B253 (1991) 483]

Phys. Lett. B265 (1991) 172]

2.2. ADS Method

Setup and CKM overview

- ADS Method
- GGSZ Method
- Dalitz (GW) Method

3 Combination of Measurements

ADS Method

- CF or DCS decays e.g. $D \rightarrow K\pi$
- Atwood, Dunietz, Soni (1997,2001)
- [Phys. Rev. D63 (2001) 036005]
- [Phys. Rev. Lett. 78 (1997) 3257]

ADS observables

ADS Method

- CF or DCS decays e.g. $D o K\pi$
- Atwood, Dunietz, Soni (1997,2001)

- [Phys. Rev. D63 (2001) 036005]
- [Phys. Rev. Lett. 78 (1997) 3257]

ADS observables

• Much harder to extract partially reconstructed observables because of $B_s^0 \rightarrow D^{(*)0} K^+ \pi^-$ backgrounds.

ADS Method

- CF or DCS decays e.g. $D o K\pi$
- Atwood, Dunietz, Soni (1997,2001)

- [Phys. Rev. D63 (2001) 036005]
- [Phys. Rev. Lett. 78 (1997) 3257]

ADS observables

- Much harder to extract partially reconstructed observables because of $B_s^0 \rightarrow D^{(*)0} K^+ \pi^-$ backgrounds.
- ► Can extend to multibody-DCS-decays $(D^0 \to K\pi\pi^0)$ if dilution from interference, κ_D , is known

ADS Method	
CF or DCS decays e.g. $D \rightarrow K\pi$ [Phys. Rev. D63 (2001) 036005]Atwood, Dunietz, Soni (1997,2001)[Phys. Rev. Lett. 78 (1997) 3257]]
ADS observables	
$A_{ADS} = \frac{\Gamma(B^- \to [K^+\pi^-]_D K^-) - \Gamma(B^+ \to [K^-\pi^+]_D K^+)}{\Gamma(B^- \to [K^+\pi^-]_D K^-) + \Gamma(B^+ \to [K^-\pi^+]_D K^+)} = \frac{2r_B r_D \kappa_D \sin(\delta_B + \delta_D) \sin(\gamma)}{r_B^2 + r_D^2 + 2r_B r_D \kappa_D \cos(\delta_B + \delta_D) \cos(\gamma)}$	$\overline{s(\gamma)}$ (3)
$R_{ADS} = \frac{\Gamma(B^- \to [K^+\pi^-]_D K^-) + \Gamma(B^+ \to [K^-\pi^+]_D K^+)}{\Gamma(B^- \to [K^-\pi^+]_D K^-) + \Gamma(B^+ \to [K^+\pi^-]_D K^+)} = r_B^2 + r_D^2 + 2r_B r_D \kappa_D \cos(\delta_B + \delta_D) \cos(\delta_D + \delta_D) \cos(\delta_D + \delta_D) \sin(\delta_D) \sin(\delta_D) \cos(\delta_D + \delta_D) \sin(\delta_D) $	(γ) (4)
A single (vet broader) solution γ [°]	
Require knowledge of r_D , δ_D , κ_D from charm friends	

2. Measuring γ ADS Method

Matthew Kenzie

UK Flavour Meeting

21/81

2.3. GGSZ Method

Setup and CKM overview

2 Measuring γ

- GLW Method
- ADS Method
- GGSZ Method
- Dalitz (GW) Method

3 Combination of Measurements

GGSZ Method

- 3-body final states e.g. $D o K^0_{
 m S} \pi \pi$
- Giri, Grossman, Soffer, Zupan (2003)

GGSZ observables (partial rate as function of Dalitz position)

$$d\Gamma_{B^{\pm}}(\mathbf{x}) = A_{(\pm,\mp)}^{2} + r_{B}^{2} A_{(\mp,\pm)}^{2} + 2A_{(\pm,\mp)} A_{(\mp,\pm)} [\underbrace{r_{B} \cos(\delta_{B} \pm \gamma)}_{x_{\pm}} \cos(\delta_{D(\pm,\mp)}) + \underbrace{r_{B} \sin(\delta_{B} \pm \gamma)}_{y_{\pm}} \sin(\delta_{D(\pm,\mp)})]$$
(5)

Excellent sensitivity from interference between various contributions

►

[Phys. Rev. D68 (2003) 054018]

GGSZ Method

- 3-body final states e.g. $D \to K^0_{
 m S} \pi \pi$
- Giri, Grossman, Soffer, Zupan (2003)

GGSZ observables (partial rate as function of Dalitz position)

$$d\Gamma_{B\pm}(\mathbf{x}) = A_{(\pm,\mp)}^{2} + r_{B}^{2}A_{(\mp,\pm)}^{2} + 2A_{(\pm,\mp)}A_{(\mp,\pm)}[\underbrace{r_{B}\cos(\delta_{B}\pm\gamma)}_{\times_{\pm}}\cos(\delta_{D(\pm,\mp)}) + \underbrace{r_{B}\sin(\delta_{B}\pm\gamma)}_{\gamma_{\pm}}\sin(\delta_{D(\pm,\mp)})]$$
(6)

►

- $x_{\pm} + iy_{\pm} = r_B e^{i(\delta_B \pm \gamma)}$
- Uncertainty on γ is inversely proportional to central value of hadronic unknown!!

[Phys. Rev. D68 (2003) 054018]

 Fluctuation in nuisance parameter = fluctuation in error on parameter of interest!

GGSZ Method

- 3-body final states e.g. $D \to K_{\rm S}^0 \pi \pi$
- Giri, Grossman, Soffer, Zupan (2003)

GGSZ observables (partial rate as function of Dalitz position)

$$d\Gamma_{B^{\pm}}(\mathbf{x}) = A_{(\pm,\mp)}^{2} + r_{B}^{2} A_{(\mp,\pm)}^{2} + 2A_{(\pm,\mp)} A_{(\mp,\pm)} [\underbrace{r_{B} \cos(\delta_{B} \pm \gamma)}_{x_{\pm}} \cos(\delta_{D(\pm,\mp)}) + \underbrace{r_{B} \sin(\delta_{B} \pm \gamma)}_{y_{\pm}} \sin(\delta_{D(\pm,\mp)})]$$
(7)

γ[°]

2.4. Dalitz (GW) Method

Setup and CKM overview

2 Measuring γ

- GLW Method
- ADS Method
- GGSZ Method
- Dalitz (GW) Method

3 Combination of Measurements

Dalitz (GW) Method

- ▶ Use Dalitz structure of **B** decays
- $\blacktriangleright B^- \to D^0 K^+ \pi^-$

- 27/81
- Gerhson, Williams (2009)
- [Phys. Rev. D80 (2009) 092002]
- \blacktriangleright Get multiple interfering resonances which increase sensitivity to γ
 - ▶ $D_0^*(2400)^-$, $D_2^*(2460)^-$, $K^*(892)^0$, $K^*(1410)^0$, $K_2^*(1430)^0$
- Fit B decay Dalitz Plot for cartesian parameters (similar to GGSZ except for the B not the D)
 - ▶ $D \rightarrow K^+K^-$, $D \rightarrow \pi^+\pi^-$ GLW-Dalitz (done by LHCb [arXiv:1602.03455])
 - ▶ $D \to K^{\pm} \pi^{\mp}$ ADS-Dalitz (problematic backgrounds from $B_s^0 \to D^{(*)0} K^+ \pi^-$)
 - $D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$ GGSZ-Dalitz (double Dalitz!)

Current status of measurements

Method		B Decay	$B^- ightarrow D^0 K^-$			$B^- \rightarrow D^0 K^{*-}$ $[K^{*-} \rightarrow K^0_{\scriptscriptstyle \mathrm{S}} \pi^-]$			$\begin{array}{c} B^{-} \to D^{*0} K^{-} \\ [D^{*0} \to D^{0} \pi^{0}], [D^{*0} \to D^{0} \gamma] \end{array}$						$B^0 \to D^0 K^+ \pi^-$					
		D Decay							р	art-re	ec	f	ull-re	с	h	K ^{*0} re	s]	Dalitz	
GLW		$D^0 \rightarrow K^+ K^-$	5	~	1	5	-	 Image: A second s	5	-	-	•	~	1	3	-	-	3	-	-
	/en	$D^0 \rightarrow \pi^+ \pi^-$	5	\checkmark	✓	5	-	 Image: A second s	5	-	-	•	\checkmark	1	3	-	-	3	-	-
	-e	$D^0 \to K^+ K^- \pi^0$	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	D	$D^0 \to \pi^+\pi^-\pi^0$	3	-	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		$D^0 \to \pi^+\pi^-\pi^+\pi^-$	3	-	-	5	-	-	5	-	-	•	-	-	-	-	-	-	-	-
	dd	$D^0 \rightarrow K_s^0 \pi^0$	-	~	~	-	-	✓	-	-	-	-	~	1	-	-	-	-	-	-
	õ	$D^0 \rightarrow K_s^0 \phi$	-	\checkmark	1	-	-	✓	-	-	-	-	\checkmark	1	-	-	-	-	-	-
	5	$D^0 \rightarrow K^0_{\rm S} \omega$	-	\checkmark	✓	-	-	 Image: A second s	-	-	-	-	\checkmark	1	-	-	-	-	-	-
ADS		$D^0 \rightarrow K^+ \pi^-$	3	~	1	5	-	✓	-	-	-	•	~	 Image: A second s	3	~	 Image: A second s	-	-	-
		$D^0 \rightarrow K^+ \pi^- \pi^0$	3	\checkmark	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
		$D^0 \to K^+\pi^-\pi^+\pi^-$	3	-	-	5	-	-	-	-	-	•	-	-	-	-	1	-	-	-
GGSZ		$D^0 \rightarrow K_s^0 \pi^+ \pi^-$	3•	~	1	•	~	√	-	-	-	•	~	√	3•	~	 Image: A second s	-	-	-
		$D^0 \rightarrow K^0_s K^+ K^-$	3•	-	1	•	-	-	-	-	-	•	-	1	3•	-	-	-	-	-
		$D^0 \rightarrow K^0_s \pi^+ \pi^- \pi^0$	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		$D^0 \rightarrow K^0_c K^+ K^- \pi^0$	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

KEY: 3, 5: LHCb published (fb⁻¹), •: LHCb in progress, \checkmark : Belle, \checkmark : BaBar

NOTE: LHCb has a 1• TD result with $B_s^0 \rightarrow D_s^- K^+$

LHCb has a 3 GLW/ADS result with $B^- \rightarrow D^0 K^- \pi^+ \pi^-$

LHCb has a 3 GLS result from $B^- \rightarrow D^0 K^-$ with $D^0 \rightarrow K^0_{\rm s} K^{\pm} \pi^{\mp}$

3. Combination of Measurements

Setup and CKM overview

2 Measuring γ

- GLW Method
- ADS Method
- GGSZ Method
- Dalitz (GW) Method

3 Combination of Measurements

Combining measurements to determine γ

- \blacktriangleright The different methods mentioned previously are complimentary in determining γ
 - GLW excellent sensitivty but multiple solutions
 - ADS poorer sensitivty but fewer solutions
 - GGSZ a single unambigous solution
 - GW currently fairly weak sensitivity
 - ▶ TD single solution with wide sensitivity (but only measurement with initial state B_s^0)
- Best precision can only be obtained by combining several measurements together
- Requires knowledge of external parameters
 - Particularly in the D system (e.g. r_D , δ_D , κ_D)
 - Extracted from charm data obtained elsewhere (HFLAV, CLEO, LHCb)
- Should also account for $D^0 \overline{D}^0$ mixing (and K^0 mixing)
 - Although impact is small for most $B \rightarrow DK$ -like systems (as $r_D \ll r_B$)

LHCb γ Combination

- Recently updated for EPS [LHCb-CONF-2017-004]
- Combination of all $B \rightarrow DK$ -like modes
 - 85 observables and 37 free parameters
- Frequentist Feldman-Cousins "plugin" procedure
 - $p(\chi^2, N_{\rm dof}) = 84.8\%$
 - $p(toys) = (86.8 \pm 0.2)\%$
- Uncertainty $< 10^{\circ}$ is better than combined *B* factories
- \blacktriangleright The most precise single experiment measurement of γ

LHCb γ Combination

- Comparison between different decay modes and different analysis methods important
- In certain NP scenarios one can see differences between decays modes
- There shouldn't be any between methods

The World Average

- ► World average performed for HFLAV ([arXiv:1612.07233]) and PDG
- Add to LHCb results from Belle, BaBar and CDF
 - Always the most up to date result (HFLAV)
 - Only use published results (PDG)
- A few minor differences (simplifications)
- 132 observables and 33 free parameters

4. Status and Prospects

Setup and CKM overview

2 Measuring γ

- GLW Method
- ADS Method
- GGSZ Method
- Dalitz (GW) Method

Combination of Measurements

Current status of measurements

Method		B Decay	B^-	$\rightarrow D$	${}^{0}K^{-}$	$B^- \rightarrow D^0 K^{*-}$			$B^- \rightarrow D^{*0}K^-$							$B^0 \rightarrow D^0 K^+ \pi^-$					
		D Docay				$[K \rightarrow K_S \pi]$		ĸŝπ]	$[D^{\circ\circ} \to D^{\circ} \pi^{\circ}], [D^{\circ\circ} \to D^{\circ} \gamma]$												
		D Decay					part-rec			full-rec			K^{*0} res			Dalitz					
GLW CP-odd CP-even		$D^0 \rightarrow K^+ K^-$	5	~	1	5	-	<	5	-	-	•	~	1	3	-	-	3	-	-	
	/en	$D^0 \rightarrow \pi^+ \pi^-$	5	\checkmark	1	5	-	✓	5	-	-	•	\checkmark	1	3	-	-	3	-	-	
	-e-	$D^0 \rightarrow K^+ K^- \pi^0$	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	U	$D^0 \rightarrow \pi^+ \pi^- \pi^0$	3	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
		$D^0 \to \pi^+\pi^-\pi^+\pi^-$	3	-	-	5	-	-	5	-	-	•	-	-	-	-	-	-	-	-	
	dd	$D^0 \rightarrow K^0_s \pi^0$	-	~	1	-	-	✓	-	-	-	-	~	1	-	-	-	-	-	-	
	Ŷ	$D^0 \rightarrow K_s^0 \phi$	-	\checkmark	1	-	-	✓	-	-	-	-	\checkmark	1	-	-	-	-	-	-	
	5	$D^0 \rightarrow K^0_s \omega$	-	\checkmark	1	-	-	✓	-	-	-	-	\checkmark	1	-	-	-	-	-	-	
		$D^0 \rightarrow K^+ \pi^-$	3	~	1	5	-	√	-	-	-	•	~	1	3	~	~	-	-	-	
- Å		$D^0 \rightarrow K^+ \pi^- \pi^0$	3	\checkmark	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	
1		$D^0 \to K^+\pi^-\pi^+\pi^-$	3	-	-	5	-	-	-	-	-	•	-	-	-	-	✓	-	-	-	
GGSZ		$D^0 \rightarrow K^0_s \pi^+ \pi^-$	3•	~	1	•	~	1	-	-	-	•	~	1	3•	~	1	-	-	-	
		$D^0 \rightarrow K^0_{\rm s} K^+ K^-$	3•	-	1	•	-	-	-	-	-	•	-	1	3•	-	-	-	-	-	
		$D^0 \rightarrow K_s^0 \pi^+ \pi^- \pi^0$	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
		$D^0 \rightarrow K^0_s K^+ K^- \pi^0$	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

KEY: 3, 5: LHCb published (fb⁻¹), •: LHCb in progress, \checkmark : Belle, \checkmark : BaBar

NOTE: LHCb has a 1• TD result with $B_s^0 \rightarrow D_s^- K^+$

LHCb has a 3 GLW/ADS result with $B^- \to D^0 K^- \pi^+ \pi^-$

LHCb has a 3 GLS result from $B^- \rightarrow D^0 K^-$ with $D^0 \rightarrow K_s^0 K^{\pm} \pi^{\mp}$

- Some gaps to be filled
- Some new columns to be added...

Extensions to other decays

Extension for many other decays(by no means a complete list)

1. Obvious extensions to higher resonant final states

$$\blacktriangleright B^{\pm} \rightarrow D^0 K^{*\pm} (K^{*\pm} \rightarrow K^0_{\rm S} \pi^{\pm})$$

$$\blacktriangleright B^{\pm} \rightarrow D^{*0} K^{\pm} (D^{*0} \rightarrow D^{0} \gamma \text{ or } D^{*0} \rightarrow D^{0} \pi^{0})$$

- mainly just the B factories so far LHCb starting for Run 2
- ▶ Similar hadronic parameters as $B^{\pm} \rightarrow D^0 K^{\pm}$ but lower yields
- 2. Extensions to other *B* decays (swapping spectator quark)
 - ► $B^0_{\ \alpha} \rightarrow D^0_{\ \alpha} K^{*0}_{\ \alpha}$ ($K^{*0} \rightarrow K^+ \pi^-$ tags initial *B* flavour)
 - $B^0 \rightarrow D^0 K^0_S$ (not self tagging)
 - $B_{s}^{0} \rightarrow D^{0}\phi$ (not self tagging and low rate)
 - ▶ $B_c^{\pm} \rightarrow D^0 D^{\pm}$ (very low rate favoured mode not yet seen)
 - under exploration at LHCb with some $B^0 \rightarrow D^0 K^{*0}$ published
 - Typically enhanced r_B because favoured diagram is colour supressed
- 3. Extension into baryon sector (add/swap spectators)
 - $\land \Lambda^0_b \to D^0 \Lambda \ (\Lambda \to p\pi^-)$
 - Difficult either long lived final state or dominated by strong interaction
- 4. Swap final state K^{\pm} for π^{\pm}
 - ► $B^{\pm} \rightarrow D^0 \pi^{\pm}$
 - ▶ Tried at LHCb problematic as r_B is very small statistical difficulties
- 5. New ideas...
Direct consideration of New Physics

► There is still considerable scope in current constraints on tree-level NP in Wilson coefficients C₁ and C₂ - [Phys. Rev. D92 (2015) 033002]

• With sufficient precision on γ we can modify our definition of the supressed / favoured amplitude ratio and fit these directly

$$\begin{aligned} & \text{Modification of } \mathcal{A}(B^{-} \to \overline{D}{}^{0}K^{-})/\mathcal{A}(B^{-} \to D^{0}K^{-}) \\ & r_{B}e^{i\delta_{B}-\gamma} \to r_{B}e^{i\delta_{B}-\gamma} \bigg[\frac{\mathcal{C}_{2}^{SM} + r_{A}\mathcal{C}_{1}^{SM}}{\mathcal{C}_{2}^{SM} + r_{A'}\mathcal{C}_{1}^{SM}} \frac{\mathcal{C}_{2}^{SM} + \Delta\mathcal{C}_{2}^{NP} + r_{A'}(\mathcal{C}_{1}^{SM} + \Delta\mathcal{C}_{1}^{NP})}{\mathcal{C}_{2}^{SM} + \Delta\mathcal{C}_{2}^{NP} + r_{A}(\mathcal{C}_{1}^{SM} + \Delta\mathcal{C}_{1}^{NP})} \bigg] \end{aligned}$$
(8)

4. Status and Prospects

Prospects

- With Run II of the LHC underway and Belle II starting soon the prospects look good
 LHCb and Belle II compliment each other for many measurements
- \blacktriangleright We can reasonably expect to half the experimental uncertainty on γ in the next 3 years
- \blacktriangleright We can reasonably expect to have $\sim 1^\circ$ precision in the next 5-8 years
- \blacktriangleright In 10-12 years we should be $<1^\circ$
- Current systematic effects are relatively small:

 \blacktriangleright Tree measurements of γ will not be systematically limited for a little while yet

This does not include smart new ideas which people often have

Prospects

What happens when we start to become systematically dominated

- For the most sensitive analyses (those using B[±] → D⁰K[±]) the systematics are roughly a factor of 3-5 smaller than the statistical uncertainties
- ► Many of these systematics can be improved and also have a statistical dependence
- ► However, at 50 fb⁻¹ (or even 300 fb⁻¹ if it ever happens) this will be a serious consideration
- The main systematics for the different methods (GLW/ADS/GGSZ/TD etc.) come from different sources
- If we start to see differences between the different methods then we probably made a mistake
- If we start to see differences between different decay modes then a mistake is less likely and the difference has physical motivation
- ► We will have to start working out the correlation of systematics among different decay modes
 - Simultaneous methods are under consideration to mitigate this
- ▶ We will also need better external information charm inputs from BES III

TD measurements could eventually be used as a penguin-free determination of $\phi_{\rm s}$

•
$$B_s^0
ightarrow D_s^- K^+$$
 measures $(\gamma - 2\beta_s)$

Prospects

- ▶ We are approaching the first tree-level precision measurement of the CKM triangle
- Direct measurements of V_{ub} play a crucial role in this as well

[arXiv:1309.2293]

BACKUP

Matthew Kenzie

UK Flavour Meeting

Measurement of the CKM angle γ

CKM matrix

►

• Quark mixing in the SM is described by the 3×3 unitary CKM matrix

The matrix elements determine the transition probability

• Parameterised by three mixing angles (θ_{12} , θ_{13} , θ_{23}) and a CP violating phase (δ)

CKM matrix

The CKM matrix exhibits a clear hierachy, sin(θ₁₃) << sin(θ₂₃) << sin(θ₁₂) << 1, so often expressed in Wolfenstein parameterisation (A, λ, ρ, η)</p>

Wolfenstein parametrisation

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- Hierachy gives very distinctive behaviour to the flavour sector of the SM which gives strong constraints on NP
- CKM matrix gives the only source of CP violation in the SM ($m_{\nu} = \theta_{QCD} = 0$)

Methods to measure γ

Reconstruct the D^0/\overline{D}^0 in a final state accesible to both to acheieve interference

- GLW method
 - CP eigenstates e.g. $D \rightarrow KK$
 - Gronau, London, Wyler (1991)
- ADS method
 - CF or DCS decays e.g. $D \to K\pi$
 - Atwood, Dunietz, Soni (1997,2001)
- GGSZ method
 - 3-body final states e.g. $D \to K^0_{\rm S} \pi \pi$
 - Giri, Grossman, Soffer, Zupan (2003)

- [Phys. Lett. B253 (1991) 483]
- [Phys. Lett. B265 (1991) 172]
- [Phys. Rev. D63 (2001) 036005]
- [Phys. Rev. Lett. 78 (1997) 3257]
- [Phys. Rev. D68 (2003) 054018]

Methods to measure γ

Reconstruct the D^0/\overline{D}^0 in a final state accesible to both to acheieve interference

- GLW method
 - CP eigenstates e.g. $D \rightarrow KK$
 - Gronau, London, Wyler (1991)
- ADS method
 - CF or DCS decays e.g. $D \to K\pi$
 - Atwood, Dunietz, Soni (1997,2001)
- GGSZ method
 - 3-body final states e.g. $D \to K^0_{\rm S} \pi \pi$
 - Giri, Grossman, Soffer, Zupan (2003)

- [Phys. Lett. B253 (1991) 483]
- [Phys. Lett. B265 (1991) 172]
- [Phys. Rev. D63 (2001) 036005]
- [Phys. Rev. Lett. 78 (1997) 3257]
- [Phys. Rev. D68 (2003) 054018]

γ with *CP* eigenstates (GLW)

- Use the $B^{\pm} \rightarrow {}^{(\overline{D})_0} K^{\pm}$ case as an example:
 - **Consider only** *D* decays to *CP* eigenstates, *f*_{*CP*}
 - ▶ Favoured: $b \rightarrow c$ with strong phase δ_F and weak phase ϕ_F
 - ▶ Supressed: $b \rightarrow u$ with strong phase δ_S and weak phase ϕ_S

Subsequent amplitude to final state f_{CP} is:

$$A_f = |F|e^{i(\delta_F - \phi_F)} + |S|e^{i(\delta_S - \phi_S)}$$
(9)

$$\bar{A}_f = |F|e^{i(\delta_F + \phi_F)} + |S|e^{i(\delta_S + \phi_S)}$$
(10)

because strong phases (δ) don't change sign under CP while weak phases (ϕ) do

γ with *CP* eigenstates (GLW)

▶ Define the *CP* asymmetry as the rate difference between meson with $b(\overline{B})$ and $\overline{b}(B)$

$$\begin{aligned} \mathcal{A}_{CP} &= \frac{|\bar{A}_{\bar{f}}|^2 - |A_f|^2}{|\bar{A}_{\bar{f}}|^2 + |A_f|^2} \quad \text{(experimental observable)} \\ &= \frac{2|F||S|\sin(\delta_F - \delta_S)\sin(\phi_F - \phi_S)}{|F|^2 + |S|^2 + 2|F||S|\cos(\delta_F - \delta_S)\cos(\phi_F - \phi_S)} \end{aligned}$$

- Choose $r_B = \frac{|S|}{|F|}$ (so that r < 1) and use strong phase difference $\delta_B = \delta_F \delta_S$
- γ is the weak phase difference $\phi_F \phi_S$
- Subsequently the CP asymmetry becomes

GLW CP asymmetry

$$\mathcal{A}_{C\!P} = rac{\pm 2 r_B \sin(\delta_B) \sin(\gamma)}{1 + r_B^2 \pm 2 r_B \cos(\delta_B) \cos(\gamma)}$$

- The +(-) sign corresponds to *CP*-even (-odd) final states
- ▶ Note that r_B and δ_B (ratio and strong phase difference of favoured and supressed modes) are different for each *B* decay
- The value of γ is shared by all such decays

An example GLW analysis

• GLW analysis of $B^{\pm} \rightarrow DK^{\pm}$ with $D \rightarrow K^{+}K^{-}$ - [arXiv:1603.08993]

GLW asymmetry for $B^{\pm} \rightarrow DK^{\pm}$ and $D \rightarrow K^{+}K^{-}$ $\mathcal{A}_{CP}^{DK,KK} = \frac{\Gamma(B^{-} \rightarrow [K^{+}K^{-}]_{D}K^{-}) - \Gamma(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+})}{\Gamma(B^{-} \rightarrow [K^{+}K^{-}]_{D}K^{-}) + \Gamma(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+})}$ $= 0.087 \pm 0.020 \pm 0.008$ $\sim 4\sigma \text{ from zero}$

CP asymmetry can be seen by eye

Matthew Kenzie

UK Flavour Meeting

An example GLW analysis

- Same story with the $B^{\pm} \to D K^{\pm}$ and $D \to \pi^+ \pi^-$
- CP asymmetry can be seen by eye

GLW asymmetry for $B^{\pm} \rightarrow DK^{\pm}$ and $D \rightarrow K^{+}K^{-}$ $\mathcal{A}_{CP}^{DK,\pi\pi} = \frac{\Gamma(B^{-} \rightarrow [\pi^{+}\pi^{-}]_{D}K^{-}) - \Gamma(B^{+} \rightarrow [\pi^{+}\pi^{-}]_{D}K^{+})}{\Gamma(B^{-} \rightarrow [\pi^{+}\pi^{-}]_{D}K^{-}) + \Gamma(B^{+} \rightarrow [\pi^{+}\pi^{-}]_{D}K^{+})}$ $= 0.128 \pm 0.037 \pm 0.012$ $\sim 3\sigma \text{ from zero}$

UK Flavour Meeting

An example GLW analysis - $B^{\pm} \rightarrow D^0 K^{\pm}$, $D^0 \rightarrow K^+ K^-$

Matthew Kenzie

UK Flavour Meeting

Measurement of the CKM angle γ

50/81

BRIDGI

LHCD

γ with CF and DCS decays (ADS)

A

- A 2-body D decay to final state f accesible to both D^0 and \overline{D}^0 can be
 - Cabibbo-favoured (CF) $D^0 \rightarrow \pi^- K^+$
 - ▶ Doubly-Cabibbo-supressed (DCS) $\overline{D}^0 \rightarrow \pi^- K^+$
- Introduces 2 new hadronic parameters:
 - r_D ratio of magnitudes for D^0 and \overline{D}^0 decay to f
 - δ_D relative phase for D^0 and $\overline{D}{}^0$ decay to f
- Leads to an additional (modified) asymmetry definition and an additional ratio observable

DS asymmetry
$$\mathcal{A}_{ADS} = \frac{2r_D r_B \sin(\delta_B + \delta_D) \sin(\gamma)}{r_D^2 + r_B^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}$$

ADS ratio

$$\mathcal{R}_{ADS} = \frac{|\bar{A}_{\bar{f}}|^2 + |A_f|^2}{|\bar{A}_f|^2 + |A_{\bar{f}}|^2} = r_B^2 + r_D^2 + 2r_Br_D\cos(\delta_B + \delta_D)\cos(\gamma)$$

- Hadronic parameters r_D and δ_D can be de independently determined (using CLEO data and HFAG averages)
- Combining all information for various decays allows determination of γ , r_B and δ_B

An example ADS analysis

$$B^- \to [D^0 \to K^- \pi^+] K^- \text{ AND } B^- \to [\overline{D}^0 \to K^- \pi^+]$$

Favoured ADS asymmetry for $B^{\pm} \rightarrow DK^{\pm}$ and $D \rightarrow K^{\pm}\pi^{\mp}$

$$\mathcal{A}_{CP}^{DK,K\pi} = \frac{\Gamma(B^- \to [K^-\pi^+]_D K^-) - \Gamma(B^+ \to [K^+\pi^-]_D K^+)}{\Gamma(B^- \to [K^-\pi^+]_D K^-) + \Gamma(B^+ \to [K^+\pi^-]_D K^+)}$$

= -0.0194 ± 0.0072 ± 0.0060

 $\sim 2\sigma$ from zero

UK Flavour Meeting

An example ADS analysis

► ADS analysis of $B^{\pm} \rightarrow DK^{\pm}$ with $D \rightarrow K^{\pm}\pi^{\mp}$ which has two asymmetries 2. Supressed:

►
$$B^- \to [D^0 \to K^+ \pi^-] K^-$$
 AND $B^- \to [\overline{D}{}^0 \to K^+ \pi^-] K^-$

Favoured ADS asymmetry for $B^{\pm} \rightarrow DK^{\pm}$ and $D \rightarrow K^{\mp}\pi^{\pm}$

$$\begin{aligned} \mathcal{A}_{\rm ADS}^{DK,\pi K} &= \frac{\Gamma(B^- \to [K^+\pi^-]_D K^-) - \Gamma(B^+ \to [K^-\pi^+]_D K^+)}{\Gamma(B^- \to [K^+\pi^-]_D K^-) + \Gamma(B^+ \to [K^-\pi^+]_D K^+)} \\ &= -0.403 \pm 0.056 \pm 0.011 \end{aligned}$$

 $\sim 7\sigma$ from zero

UK Flavour Meeting

An example ADS analysis - $B^{\pm} \rightarrow D^0 K^{\pm}$, $D^0 \rightarrow K^{\pm} \pi^{\pm}$

► Favoured mode

[arXiv:1603.08993]

54/81

200 <mark>.</mark> 200 <mark>.</mark> 200

IVERSITY OF MBRIDGE

LHCD

An example ADS analysis - $B^{\pm} \rightarrow D^0 K^{\pm}$, $D^0 \rightarrow K^{\pm} \pi^{\pm}$

Suppressed mode

55/81

LHCb

IVERSITY OF

An example ADS analysis - $B^{\pm} ightarrow D^0 K^{\pm}$, $D^0 ightarrow K^{\pm} \pi^{\pm}$

- Define observables as yield ratios (many systematics cancel)
- Along with the GLW observables build a system of equations to overconstrain the parameters

ADS ratios of favoured to suppressed

$$R_{ADS}^{\bar{f}} = \frac{\Gamma(B^- \to [\bar{f}]_D h^-) + \Gamma(B^+ \to [f]_D h^+)}{\Gamma(B^- \to [f]_D h^-) + \Gamma(B^+ \to [\bar{f}]_D h^+)}$$

Corresponding charge asymmetries

$$A_{\rm ADS}^{\bar{f}} = \frac{\Gamma(B^- \to [\bar{f}]_D h^-) - \Gamma(B^+ \to [f]_D h^+)}{\Gamma(B^- \to [\bar{f}]_D h^-) + \Gamma(B^+ \to [f]_D h^+)}$$

▶ Relatively trivial extension to multibody *D* decays $(D \to 4\pi, D \to K3\pi, D \to KK\pi^0, D \to \pi\pi\pi^0, D \to K\pi\pi^0)$, multibody *B* decays $(B^{\pm} \to DK^{\pm}\pi^{+}\pi^{-})$ and other initial *B* states $(B^0 \to DK^{*0})$

Aside: Multibody final states

► The GLW/ADS formalisms are fairly trivally extended to multibody final states

GLW

- Multibody quasi-CP states
- $\blacktriangleright D \to K^+ K^- \pi^0$
- $\blacktriangleright D \to \pi^+ \pi^- \pi^0$
- $\blacktriangleright D \to \pi^+ \pi^- \pi^+ \pi^-$
- Account for the fraction, F⁺ of CP-even content

ADS

Multibody DCS decys

$$\blacktriangleright D \rightarrow K^+ \pi^- \pi^0$$

- $\blacktriangleright D \to K^+ \pi^- \pi^+ \pi^-$
- Account for the dilution, κ, from interference between resonances

$$\kappa e^{i\delta_D} = rac{\int A_f(x) A_{ar f(x) dx}}{\sqrt{\int A_f^2(x) dx \int A_{ar f}^2(x) dx}}$$

quasi-GLW asymmetryquasi-ADS asymmetry
$$\mathcal{A}_{CP} = \frac{\pm 2(2F^++1)r_B \sin(\delta_B) \sin(\gamma)}{1+r_B^2 \pm 2(2F^++1)r_B \cos(\delta_B) \cos(\gamma)}$$
 $\mathcal{A}_{CP} = \frac{2\kappa r_D r_B \sin(\delta_B + \delta_D) \sin(\gamma)}{r_D^2 + r_B^2 + 2\kappa r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}$

We can also construct partial rate ratios as additional observables

γ with 3-body self-conjugate states (GGSZ)

- ► Now get additional sensitivity over the 3-body phase space
- Idea is to perform a GLW/ADS type analysis across the D decay phase space ►
- For example $D^0 \to K^0_{\rm S} \pi^+ \pi^-$ has contributions from
 - ▶ Singly-Cabibbo-suppressed decay $D^0 \to K^0_{\rm S} \rho^0$ ▶ Doubly-Cabibbo-suppressed decay $D^0 \to K^{*+} \pi^-$

 - \blacktriangleright Interference between them enhances sensitivity and resolves amiguities in γ determination

Partial *B* rate as function of Dalitz position $(+, -) = (m_{K_c^0 \pi^+}, m_{K_c^0 \pi^-})$

$$d\Gamma_{B^{\pm}}(\mathbf{x}) = A_{(\pm,\mp)}^2 + r_B^2 A_{(\mp,\pm)}^2 + 2A_{(\pm,\pm)}A_{(\mp,\pm)} [\underbrace{r_B \cos(\delta_B \pm \gamma)}_{x_{\pm}} \cos(\delta_{D(\pm,\mp)}) + \underbrace{r_B \sin(\delta_B \pm \gamma)}_{y_{\pm}} \sin(\delta_{D(\pm,\mp)})]$$

- Model-dependent Fit Dalitz plot with full amplitude model for (x_{\pm}, y_{\pm}) ►
- Model-independent Choose binning scheme in Dalitz plane to minimize δ_D variation ► across bin and fit simultaneously in each bin for (x_{\pm}, y_{\pm})

Examples of the $D^0 \to K^0_{\rm S} \pi^+ \pi^-$ Dalitz distribution

- Model-dependent Fit Dalitz plot with full amplitude model for (x_{\pm}, y_{\pm})
- ▶ Model-independent Choose binning scheme in Dalitz plane to minimize δ_D variation across bin and fit simultaneously in each bin for (x_{\pm}, y_{\pm})
- Sensitivity to γ by comparing D Dalitz distributions for B^+ and B^-
- ▶ In other words *CP* asymmetry in bins of Dalitz space

An example GGSZ analysis

- ▶ Requires a self-conjugate 3-body final state ($D^0 \rightarrow K^0_S \pi^- \pi^+$, $D^0 \rightarrow K^0_S K^- K^+$)
- ► The basic idea is to perform a GLW/ADS type analysis in each bin of the *D* decay phase space
- Compare Dalitz distribution for B^+ and B^-
 - Model dependent: use a Dalitz model describing all the intermediate resonances and fit for x_{\pm} , y_{\pm}
 - ▶ Model independent: define bins which maximise sensitivity to x_{\pm} , y_{\pm}

UK Flavour Meeting

60/81

An example GGSZ analysis - $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K_{\rm s}^0 \pi^+ \pi^-$

- First fit invariant B mass distrbution
- Project (cut) signal candidates into Dalitz plane
- Requires experimental efficiency and background distributions in DP
- Control channels used are $B^\pm o D\pi^\pm$ and $B^- o D\mu^u$

61/81

UK Flavour Meeting

Matthew Kenzie

An example GGSZ analysis

GGSZ analyses have excellent standalone sensitivity with a single solution

"Third" uncertainty arises from:

- MD: amplitude model uncertainty
- MI: knowledge of strong phase in DP bins

 $\begin{array}{l} x_{+} = -0.077 \pm 0.024 \pm 0.010 \pm 0.004 \\ y_{+} = -0.022 \pm 0.025 \pm 0.004 \pm 0.010 \\ x_{-} = & 0.025 \pm 0.025 \pm 0.010 \pm 0.005 \\ y_{-} = & 0.075 \pm 0.029 \pm 0.005 \pm 0.014 \end{array}$

62/81

Extensions to other decays

Extension for many other decays with inclusion of relevant coherence factors, κ

1. Obvious extensions to higher resonant final states

$$\blacktriangleright B^{\pm} \rightarrow D^{0} K^{*\pm} (K^{*\pm} \rightarrow K^{0}_{S} \pi^{\pm})$$

$$B^{\pm} \rightarrow D^{*0} K^{\pm} (D^{*0} \rightarrow D^{0} \gamma \text{ or } D^{*0} \rightarrow D^{0} \pi^{0})$$

- mainly just the B factories so far LHCb starting for Run 2
- ▶ Similar hadronic parameters as $B^{\pm} \rightarrow D^0 K^{\pm}$ but lower yields
- 2. Extensions to other B decays (swapping spectator quark)
 - ► $B^0_{ a} \rightarrow D^0_{ a} K^{*0}$ ($K^{*0} \rightarrow K^+ \pi^-$ tags initial B flavour)
 - $B^0 \rightarrow D^0 K^0_{\rm S}$ (not self tagging)
 - $B_s^0 \rightarrow D^0 \phi$ (not self tagging and low rate)
 - ▶ $B_c^{\pm} \rightarrow D^0 D^{\pm}$ (very low rate favoured mode not yet seen)
 - ▶ under exploration at LHCb with some $B^0 \rightarrow D^0 K^{*0}$ published
 - Typically enhanced r_B because favoured diagram is colour supressed
- 3. Extension into baryon sector (add/swap spectators)
 - $\blacktriangleright \Lambda^0_b \to D^0 \Lambda \ (\Lambda \to p \pi^-)$
 - Difficult either long lived final state or dominated by strong interaction
- 4. Swap final state K^{\pm} for π^{\pm}
 - $\blacktriangleright B^{\pm} \rightarrow D^0 \pi^{\pm}$
 - Tried at LHCb problematic as r_B is very small statistical difficulties
- 5. Other methods
 - Time-dependent method $(B_s^0 \rightarrow D_s^{\mp} K^{\pm} \text{ etc.})$
 - ▶ Dalitz method (multibody B decays e.g. $B^0 \rightarrow D^0 K^{\pm} \pi^{\mp}$)
 - Both tried at LHCb

The time-dependent method with $B^0_s o D^{\mp}_s K^{\pm}$

- ▶ B_s^0 and \overline{B}_s^0 can both decay to same final state $D_s^{\mp} K^{\pm}$ (one via $b \to cW$, the other via $b \to uW$)
- ▶ Intereference acheived by neutral B_s^0 mixing (requires knowledge of $-2\beta_s \equiv \phi_s$)
 - Weak phase difference is $(\gamma 2\beta_s)$

- Requires tagging the initial B_s^0 flavour
- Requires a time-dependent analysis to observe the meson oscillations
- Fit the decay-time-dependent decay rates
- Also requires knowledge of Γ_s , $\Delta\Gamma_s$, Δm_s

64/81

The time-dependent method with $B_s^0 ightarrow D_s^{\mp} K^{\pm}$

Time-dependent decay rate for initial
$$B_s^0$$
 or \overline{B}_s^0 at $t = 0$

$$\frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} \propto e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma_s} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right. \\ \left. + C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \right] \\ \frac{\mathrm{d}\Gamma_{\bar{B}_s^0 \to f}(t)}{\mathrm{d}t} \propto e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma_s} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right. \\ \left. - C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \right]$$

Time-dependent rate asymmetry

$$\mathcal{A}_{CP}(t) = \frac{\Gamma_{\bar{B}^0_s \to f}(t) - \Gamma_{B^0_s \to f}(t)}{\Gamma_{\bar{B}^0_s \to f}(t) + \Gamma_{B^0_s \to f}(t)} = \frac{S_f \sin(\Delta m_s t) - C_f \cos(\Delta m_s t)}{\cosh(\frac{\Delta \Gamma_s t}{2}) + A_f^{\Delta \Gamma_s} \sinh(\frac{\Delta \Gamma_s t}{2})}$$

The time-dependent method with $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$

Matthew Kenzie

66/81 BRIDGI

Dalitz methods

▶ Study Dalitz structure of 3-body *B* decays with $B^0 \rightarrow D^0 K^+ \pi^-$

- In principle has excellent sensitivity to γ
- "GW method"? (Gershon-Williams [arXiv:0909.1495])
- \blacktriangleright Get multiple interfering resonances which increase sensitivity to γ
 - ▶ $D_0^*(2400)^-$, $D_2^*(2460)^-$, $K^*(892)^0$, $K^*(1410)^0$, $K_2^*(1430)^0$
- Fit B decay Dalitz Plot for cartesian parameters (similar to GGSZ except for the B not the D)
 - ▶ $D \rightarrow K^+K^-$, $D \rightarrow \pi^+\pi^-$ GLW-Dalitz (done by LHCb [arXiv:1602.03455])
 - ▶ $D \rightarrow K^{\pm} \pi^{\mp}$ ADS-Dalitz (problematic backgrounds from $B_s^0 \rightarrow DK^{\pm} \pi^{\mp}$)
 - $D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$ GGSZ-Dalitz (double Dalitz!)

Methods to measure γ

GLW observables

$$A_{\mathcal{P}} = \frac{\Gamma(B^{-} \to D_{\mathcal{O}}^{0}K^{-}) - \Gamma(B^{+} \to D_{\mathcal{O}}^{0}K^{+})}{\Gamma(B^{-} \to D_{\mathcal{O}}^{0}K^{-}) + \Gamma(B^{+} \to D_{\mathcal{O}}^{0}K^{+})} = \frac{\pm 2r_{B}\sin(\delta_{B})\sin(\gamma)}{1 + r_{B}^{2} \pm 2r_{B}\cos(\delta_{B})\cos(\gamma)}$$
(11)
$$R_{\mathcal{P}} = \frac{\Gamma(B^{-} \to D_{\mathcal{O}}^{0}K^{-}) + \Gamma(B^{+} \to D_{\mathcal{O}}^{0}K^{+})}{\Gamma(B^{-} \to D^{0}K^{-}) + \Gamma(B^{+} \to D^{0}K^{+})} = 1 + r_{B}^{2} \pm 2r_{B}\cos(\delta_{B})\cos(\gamma)$$
(12)

ADS observables

$$A_{ADS} = \frac{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) - \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})}{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})} = \frac{2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin(\gamma)}{r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos(\gamma)}$$
(13)
$$R_{ADS} = \frac{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})}{\Gamma(B^{-} \to [K^{-}\pi^{+}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{+}\pi^{-}]_{D}K^{+})} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos(\gamma)$$
(14)

GGSZ observables (partial rate as function of Dalitz position)

$$\begin{aligned} x_{\pm} &= r_B \cos(\delta_B \pm \gamma) \tag{15} \\ y_{\pm} &= r_B \sin(\delta_B \pm \gamma) \tag{16} \\ d\Gamma_{B\pm}(\mathbf{x}) &= A_{(\pm,\mp)}^2 + r_B^2 A_{(\mp,\pm)}^2 \\ &+ 2A_{(\pm,\mp)} A_{(\mp,\pm)} \left[\underbrace{r_B \cos(\delta_B \pm \gamma)}_{x_{\pm}} \cos(\delta_{D(\pm,\mp)}) + \underbrace{r_B \sin(\delta_B \pm \gamma)}_{y_{\pm}} \sin(\delta_{D(\pm,\mp)}) \right] \tag{17}$$

Matthew Kenzie

UK Flavour Meeting

Measurement of the CKM angle γ

Methods to measure γ

- ► <u>GLW method</u>
 - CP eigenstates e.g. $D \to KK$
 - Gronau, London, Wyler (1991)
- ADS method
 - CF or DCS decays e.g. $D o K\pi$
 - Atwood, Dunietz, Soni (1997,2001)
- GGSZ method
 - ▶ 3-body final states e.g. $D \to K^0_{
 m S} \pi \pi$
 - Giri, Grossman, Soffer, Zupan (2003)
- TD method
 - Interference through B_s^0 mixing phase $= (\gamma 2\beta_s)$
 - Gronau, London, Wyler (1991)
- Dalitz method
 - CP eigenstates e.g. $D \to KK$
 - Gronau, London, Wyler (1991)

- [Phys. Lett. B265 (1991) 172]
- [Phys. Rev. D63 (2001) 036005]
- [Phys. Rev. Lett. 78 (1997) 3257]
- [Phys. Rev. D68 (2003) 054018]

- [Phys. Lett. B253 (1991) 483]
- [Phys. Lett. B265 (1991) 172]
- [Phys. Lett. B253 (1991) 483]
- [Phys. Lett. B265 (1991) 172]

69/81

The cartesian coordinates

Cartesian definition

$$x_{\pm} + iy_{\pm} = r_B e^{i(\delta_B \pm \gamma)}$$
$$x_{\pm} = r_B \cos(\delta_B \pm \gamma)$$
$$y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

- Use these for fit stability
- Ease of combianation
- Good statistical behaviour

Uncertainty on γ is inversely proportional to central value of hadronic unknown!!

▶ Fluctuation in nuisance parameter = fluctuation in error on parameter of interest!

GLS method

- ▶ Use and ADS-like method with singly-Cabibbo suppressed decays $D \to K^0_{
 m S} K^{\pm} \pi^{\mp}$
- Use Dalitz Plot for 3-body D decay
- \blacktriangleright Currently poor sensitivity to γ as the rate is incredibly low

LHCb γ combination inputs

B decay		D decay	Туре	$\int \mathcal{L}$	Ref.
LHCb Inputs	$B^+ \rightarrow DK^+$	$D \rightarrow hh$	GLW/ADS	$3\mathrm{fb}^{-1}$	[arXiv:1603.08993]
	$B^+ ightarrow DK^+$	$D ightarrow h\pi\pi\pi$	GLW/ADS	$3{\rm fb}^{-1}$	[arXiv:1603.08993]
	$B^+ ightarrow DK^+$	$D ightarrow hh \pi^0$	GLW/ADS	$3 \mathrm{fb}^{-1}$	[arXiv:1504.05442]
	$B^+ \rightarrow DK^+$	$D ightarrow K^0_{ m S} hh$	GGSZ	$3 {\rm fb}^{-1}$	[arXiv:1405.2797]
	$B^+ \rightarrow DK^+$	$D ightarrow K_{ m S}^0 K \pi$	GLS	$3 {\rm fb}^{-1}$	[arXiv:1402.2982]
	$B^0 ightarrow D^0 K^{*0}$	$D \to K \pi$	ADS	$3 {\rm fb}^{-1}$	[arXiv:1407.3186]
	$B^+ ightarrow DK^+ \pi \pi$	D ightarrow hh	GLW/ADS	$3 {\rm fb}^{-1}$	[arXiv:1505.07044]
	$B_s^0 ightarrow D_s^{\mp} K^{\pm}$	$D_s^+ ightarrow hhh$	TD	$1{ m fb}^{-1}$	[arXiv:1407.6127] *
	$B^0 ightarrow D^0 K^+ \pi^-$	D ightarrow hh	GLW-Dalitz	$3 \mathrm{fb}^{-1}$	[arXiv:1602.03455]
	$B^0 \rightarrow D^0 K^{*0}$	$D ightarrow K_{ m S}^0 \pi \pi$	GGSZ	$3 \mathrm{fb}^{-1}$	[arXiv:1604.01525]
Decay Parameters		Source		Ref.	
illiary Inputs	$D^0 - \overline{D}^0$ mixing		HFIAv	-	[arXiv:1412.7515]
	$D ightarrow K \pi \pi \pi$	$(\delta_D, \kappa_D, r_D)$	CLEO+LHCb	-	[arXiv:1602.07430] *
	$D ightarrow \pi \pi \pi \pi$	(F^+)	CLEO	-	[arXiv:1504.05878]
	$D ightarrow K \pi \pi^0$	$(\delta_D, \kappa_D, r_D)$	CLEO+LHCb	-	[arXiv:1602.07430]
	$D \rightarrow hh\pi^0$	(F^+)	CLEO	-	[arXiv:1504.05878]
		(~)			· · · · · · · · · · · · · · · · · · ·
	$D \rightarrow K_{S}^{0}K\pi$	(δ_D, κ_D)	CLEO	-	[arXiv:1203.3804] *
XII	$D \to K^{0}_{S}K\pi$ $D \to K^{0}_{S}K\pi$	(δ_D, κ_D) (r_D)	CLEO CLEO	-	[arXiv:1203.3804] * [arXiv:1203.3804]
Aux	$D \to K^{0}_{S}K\pi$ $D \to K^{0}_{S}K\pi$ $D \to K^{0}_{S}K\pi$	(δ_D, κ_D) (r_D) (r_D)	CLEO CLEO LHCb	- -	[arXiv:1203.3804] * [arXiv:1203.3804] [arXiv:1509.06628]
Aux	$D \to K^{\circ}_{S}K\pi$ $D \to K^{\circ}_{S}K\pi$ $D \to K^{0}_{S}K\pi$ $B^{0} \to D^{0}K^{*0}$	$ \begin{array}{c} (\delta_D, \kappa_D) \\ (r_D) \\ (r_D) \\ (\kappa_B, \bar{R}_B, \bar{\Delta}_B) \end{array} $	CLEO CLEO LHCb LHCb	-	[arXiv:1203.3804] * [arXiv:1203.3804] [arXiv:1509.06628] [arXiv:1602.03455]
Aux	$D \to K_{\rm S}^{\rm c} K \pi$ $D \to K_{\rm S}^{\rm c} K \pi$ $D \to K_{\rm S}^{\rm c} K \pi$ $B^{\rm 0} \to D^{\rm 0} K^{*\rm 0}$ $B_{\rm s}^{\rm 0} \to D_{\rm s}^{\rm c} K^{\rm -}$	$ \begin{array}{l} (\delta_D, \kappa_D) \\ (r_D) \\ (r_D) \\ (\kappa_B, \bar{R}_B, \bar{\Delta}_B) \\ (\phi_s) \end{array} $	CLEO CLEO LHCb LHCb LHCb	-	[arXiv:1203.3804] * [arXiv:1203.3804] [arXiv:1509.06628] [arXiv:1602.03455] [arXiv:1411.3104]

New or updated since last combination

Matthew Kenzie

UK Flavour Meeting
LHCb γ Combination

Naive statistical treatement (profile likelihood method) - plots for demonstrative purposes only

Matthew Kenzie

UK Flavour Meeting

Measurement of the CKM angle γ

On inclusion of $B \rightarrow D\pi$ -like modes

 \blacktriangleright $r_B^{D\pi}$ expectation \sim 0.005 (favoured enhanced by V_{ud}/V_{us} , suppressed reduced by V_{cd}/V_{cs})

Matthew Kenzie

UK Flavour Meeting

On inclusion of $B \rightarrow D\pi$ -like modes

- ▶ The *a priori* sensitivity gain is rather minimal
- Enforcing a constraint on $r_B^{D\pi}$ using a theory prediction $r_B^{D\pi} = 0.0053 \pm 0.0007$ ([arXiv:1606.09129] - Kenzie, Martinelli, Tuning)
- Recovers similar results to DK-mode combination

HFIAv γ combination inputs (1/4)

B decay	D decay	Method	Experiment
$B^- \rightarrow DK^-$	$D \to K^+ K^-, \ D \to \pi^+ \pi^-,$	GLW	BABAR
	$D \to K^0_s \pi^0, \ D \to K^0_s \omega, \ D \to K^0_s \phi$		
$B^- \to D K^-$	$D \rightarrow K^+ K^-, \ D \rightarrow \pi^+ \pi^-,$	GLW	Belle
	$D \to K^0_s \pi^0, \ D \to K^0_s \omega, \ D \to K^0_s \phi$		
$B^- \to D K^-$	$D \rightarrow K^+ K^-, \ D \rightarrow \pi^+ \pi^-$	GLW	CDF
$B^- \to D K^-$	$D \rightarrow K^+ K^-, D \rightarrow \pi^+ \pi^-$	GLW	LHCb
$B^- \rightarrow D^* K^-$	$D \to K^+ K^-, \ D \to \pi^+ \pi^-,$	GLW	BABAR
$D^* \to D\gamma \ (\pi^0)$	$D \to K^0_s \pi^0, \ D \to K^0_s \omega, \ D \to K^0_s \phi$		
$B^- ightarrow D^*K^-$	$D \rightarrow K^+ K^-, \ D \rightarrow \pi^+ \pi^-,$	GLW	Belle
$D^* \to D\gamma \ (\pi^0)$	$D \to K^0_s \pi^0, \ D \to K^0_s \omega, \ D \to K^0_s \phi$		
$B^- \rightarrow DK^{*-}$	$D \to K^+ K^-, \ D \to \pi^+ \pi^-,$	GLW	BABAR
	$D \to K^0_s \pi^0, \ D \to K^0_s \omega, \ D \to K^0_s \phi$		
$B^- \to DK^{*-}$	$D \to K^+ K^-, \ D \to \pi^+ \pi^-,$	GLW	LHCb
$B^- \to D K^- \pi^+ \pi^-$	$D \rightarrow K^+ K^-, \ D \rightarrow \pi^+ \pi^-$	GLW	LHCb

HFIAv γ combination inputs (2/4)

$B^- \rightarrow D K^- \pi^+ \pi^-$	$D \rightarrow K^+ K^-, \ D \rightarrow \pi^+ \pi^-$	GLW	LHCb
$B^- \rightarrow DK^-$	$D \to \pi^+ \pi^- \pi^0$	GLW-like	BABAR
$B^- \rightarrow DK^-$	$D \rightarrow h^+ h^- \pi^0$	GLW-like	LHCb
$B^- ightarrow DK^-$	$D \to \pi^+\pi^-\pi^+\pi^-$	GLW-like	LHCb
$B^- \rightarrow DK^-$	$D \to K^{\pm} \pi^{\mp}$	ADS	BABAR
$B^- \rightarrow DK^-$	$D \to K^{\pm} \pi^{\mp}$	ADS	Belle
$B^- \to DK^-$	$D \to K^{\pm} \pi^{\mp}$	ADS	CDF
$B^- ightarrow DK^-$	$D \to K^\pm \pi^\mp$	ADS	LHCb
$B^- \rightarrow DK^-$	$D \to K^{\pm} \pi^{\mp} \pi^0$	ADS	BABAR
$B^- \to DK^-$	$D \to K^{\pm} \pi^{\mp} \pi^0$	ADS	Belle
$B^- ightarrow DK^-$	$D \to K^{\pm} \pi^{\mp} \pi^0$	ADS	LHCb
$B^- \rightarrow DK^-$	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	ADS	LHCb
$B^- \rightarrow D^* K^-$	$D \to K^{\pm} \pi^{\mp}$	ADS	BABAR
$D^* \to D\gamma$			
$B^- \rightarrow D^* K^-$	$D \to K^{\pm} \pi^{\mp}$	ADS	BABAR
$D^* \to D\pi^0$			

HFIAv γ combination inputs (3/4)

$B^- \to DK^{*-}$	$D \to K^{\pm} \pi^{\mp}$	ADS	BABAR
$B^- \to DK^{*-}$	$D \to K^{\pm} \pi^{\mp}$	ADS	LHCb
$B^- \rightarrow D K^- \pi^+ \pi^-$	$D \to K^{\pm} \pi^{\mp}$	ADS	LHCb
$B^- \rightarrow DK^-$	$D \to K_s^0 \pi^+ \pi^-$	GGSZ MD	BABAR
$B^- ightarrow DK^-$	$D \rightarrow K_s^0 \pi^+ \pi^-$	GGSZ MD	Belle
$B^- ightarrow D^*K^-$	$D \to K_s^0 \pi^+ \pi^-$	GGSZ MD	BABAR
$D^* \to D\gamma \ (\pi^0)$			
$B^- \rightarrow D^* K^-$	$D \to K_s^0 \pi^+ \pi^-$	GGSZ MD	Belle
$D^* \to D\gamma \ (\pi^0)$			
$B^- \rightarrow DK^{*-}$	$D \to K_s^0 \pi^+ \pi^-$	GGSZ MD	BABAR
$B^- \rightarrow DK^{*-}$	$D \to K_s^0 \pi^+ \pi^-$	GGSZ MD	Belle
$B^- \rightarrow DK^-$	$D \to K_s^0 \pi^+ \pi^-$	GGSZ MI	LHCb
$B^- \rightarrow DK^-$	$D \rightarrow K_s^0 K^+ \pi^-$	GLS	LHCb
$B^0 \rightarrow DK^{*0}$	$D \to K^{\pm} \pi^{\mp}$	ADS	LHCb
$B^0 \rightarrow DK^+\pi^-$	$D \rightarrow h^+ h^-$	GLW-Dalitz	LHCb
$B^0 \rightarrow DK^+\pi^-$	$D \rightarrow K_s^0 h^+ h^-$	GGSZ MI	LHCb
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	TD	LHCb

Decay	Parameters	Source
$D \to K^\pm \pi^\mp$	$r_D^{K\pi},\delta_D^{K\pi}$	HFAG
$D \to K^\pm \pi^\mp \pi^+ \pi^-$	$\delta_D^{K3\pi}, \kappa_D^{K3\pi}, r_D^{K3\pi}$	CLEO+LHCb
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{\pi\pi\pi\pi}$	CLEO
$D\to K^\pm\pi^\mp\pi^0$	$\delta_D^{K2\pi}, \kappa_D^{K2\pi}, r_D^{K2\pi}$	CLEO+LHCb
$D \to h^+ h^- \pi^0$	$F_{\pi\pi\pi^0}, F_{KK\pi^0}$	CLEO
$D \rightarrow K^0 K^+ \pi^-$	$\delta_D^{K_SK\pi}, \kappa_D^{K_SK\pi}, r_D^{K_SK\pi}$	CLEO
$D \to \Lambda_S^* \Lambda^+ \pi$	$r_D^{K_SK\pi}$	LHCb
$B^0 \to DK^{*0}$	$\kappa_B(DK^{*0}), \overline{R}_B^{DK^{*0}}, \overline{\Delta}_B^{DK^{*0}}$	LHCb
$B^0_s ightarrow D^\mp_s K^\pm$	ϕ_s	HFAG

The World Average

A simultaneous determination of γ , r_B and δ_B for each decay allows us to extract the breakdown of favoured and suppressed decay branching fractions

	Parameter	Value			
	γ .	$(72.8^{+5.3}_{-6.3})$	0		
	$r_B^{D^0K^{\pm}}$	(0.103 ± 0)).005)		
	$r_B^{D^0K^{*\pm}}$	$(0.13 \pm 0.$	05)		
	$r_B^{D^{*0}K^{\pm}}$	$(0.12 \pm 0.$	02		
	$r_B^{D^0K^{*0}}$	$(0.22 \pm 0.$	04)		
	$\delta_B^{D^0K^{\pm}}$	$(137.4^{+5.3}_{-5.9})$)°		
	$\delta_B^{D^0K^{*\pm}}$	$(129^{+25}_{-33})^{\circ}$			
	$\delta_B^{D^{*0}\kappa^{\pm}}$	$(311^{+13}_{-17})^{\circ}$			
	$\delta_B^{D^0K^{*0}}$	$(194^{+27}_{-22})^{\circ}$			
Decay	Favoured B	BR	Suppr	essed BR	
$B^{\pm} ightarrow D^0 K^{\pm}$	(3.69 ± 0.1	$(7) \times 10^{-4}$	(3.91	\pm 0.42) $ imes$ 10 ⁻⁶	
$B^{\pm} ightarrow D^0 K^{*\pm}$	(5.30 ± 0.4	$0) imes 10^{-4}$	(8.96	\pm 6.92) $ imes$ 10 ⁻⁶	
$B^{\pm} ightarrow D^{*0} K^{\pm}$	(4.20 ± 0.3	$(4) \times 10^{-4}$	(6.05	\pm 2.07) $ imes$ 10 $^{-6}$	
$B^0 ightarrow D^0 K^{*0}$	(4.50 ± 0.6	0) $ imes$ 10 ⁻⁵	(2.18	\pm 0.84) $ imes$ 10 $^{-6}$	

- ▶ There are several established methods / channels that LHCb haven't exploited yet
 - $B^{\pm} \rightarrow D^{*0} K^{\pm}$ work is underway on both GGSZ and GLW/ADS methods
 - ▶ $B^{\pm} \rightarrow D^0 K^{*\pm}$ first GLW/ADS results shown at CKM (other methods expect inclusion for Moriond or Summer)
 - ▶ Any *CP*-odd GLW decays $(D^0 \to K^0_S \pi^0, D^0 \to K^0_S \omega)$ neutrals are **very hard** for LHCb
- ► There are also ideas for new methods / channels
 - ADS-Dalitz and GGSZ-Dalitz (double Dalitz)
 - Simultaneous GGSZ analysis (reduce systematic uncertainties)
 - TD analyses with $B_s^0 \to D_s^{+\star+} K^-$
 - Use decays from B^{0} , B^{0}_{s} , B^{+}_{s} (low branching fractions and production rates but topology means larger values of r_{B})
 - Use decays from Λ_{h}^{0} (difficult final state Λ)
- We struggle to keep up with our data as it is
 - ▶ The TD $B_s^0 \rightarrow D_s^- K^+$ analysis was only just updated to full 3 fb⁻¹ (still only a CONF and not yet a PAPER)
 - This wasn't included for the last LHCb combination but now we already have at least an equivalent size dataset for 2015+2016 and will soon have a much bigger dataset with 2017
- Belle II will start taking data soon