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Extracting physical predictions…

Perform multiple calculations  
and extrapolate

Use theoretical methods to 
understand the modification

Two basic approaches to handle these modifications

unphysical quark content
nonzero lattice spacing

Modern calculations often have reliable chiral-
continuum extrapolations (see e.g. FLAG)

Euclidean correlators

The effect of Euclidean correlators 
is observable dependent

finite 
volume

The role of finite volume is also observable dependent: 
For decay constants and form factors one should extrapolate to infinite-volume…

To extract multi-hadron decay and scattering amplitudes  
we do not take the infinite-volume limit

This is the focus of this talk!
N + ⌫` �! `+X X 2 {N,N⇡, N⇡⇡, · · · }
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In a LQCD calculation it is possible to access

finite-volume energies and matrix elements
(labels in quotes indicate quantum numbers)

Multi-hadron processes from LQCD…

HQCD|n, “⇡⇡”, Li = |n, “⇡⇡”, LiEn(L)

Lüscher (1991) + Lellouch and Lüscher (2001) derived 
relations between such finite-volume quantities and  

infinite-volume experimental observables

E0(L)

E1(L)

E2(L)

h2|H|1i

Neglect contributions scaling as           .e�M⇡L
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cot �`=1(E
⇤
n) + cot�(En, ~P ,L) = 0

Lüscher (1986, 1991), Rummukainen and Gottlieb (1995)

Example: pion scattering in the     channel…⇢

scattering phase known geometric function

m⇡ = 391MeV

⇡
⇡
!

⇡
⇡

Lattice calculations can provide robust phase-shift curves

But, these are not yet extrapolated to 
physical pions and zero lattice spacing
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1 Define finite-volume correlator and relate to skeleton expansion

Note that poles in       give finite-volume spectrumCL

P4
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E2(L)

Break diagrams into finite- and infinite-volume parts3
CL4 Sum resulting series and identify poles in       to reach 

CL(P ) = C1(P )�A0F
1

1 +M2!2F
A

Matrix of known geometric functions

det

h
cot �(E⇤

n) + cot�(En, ~P ,L)
i
= 0

Determinant over angular momenta
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Lellouch and Lüscher (2001)

To convert finite-volume LQCD matrix elements to 
physically observable decay amplitudes one uses the 

Lellouch-Lüscher conversion factor            .B[�⇡⇡]
(1). Determine finite-volume energies 
(2). Use these to determine the (derivative of the) scattering phase 

(3). Calculate the finite-volume matrix element 

(4). Combine Lellouch-Lüscher factor and finite-volume matrix 
element to deduce decay rate
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General two-hadron matrix elements

Formalism is now available for all one-to-two matrix 
elements of local currents

(1). Determine finite-volume energies 
(2). Use these to determine the (derivatives of) all scattering 
parameters in the coupled-channel sector 
(3). Calculate multiple finite-volume matrix elements 

(4). Deduce multiple, linearly independent relations between finite- 
and infinite-volume matrix elements 
(5). Solve for the infinite-volume transition amplitudes 
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h⇡⇡, out|Jµ|⇡i ⌘

How can we get this from finite-volume observables?

One has the freedom to choose       such that                        .O†|0i = Jµ|⇡iO†

L3h0|O|n, Lihn, L|O†|0i =
h0|O|⇡⇡, iniR(En, L)h⇡⇡, out|O†|0i

R. A. Briceño, MTH, A. Walker-Loud, 2015

get this from the lattice experimental observable

This can then be re-expressed as…

Derivation in a nut shell



Photoproduction h⇡⇡, out|Jµ|⇡i ⌘

!
Briceño, Dudek, Edwards,  
Schultz, Thomas, Wilson, 

Phys. Rev. D 93, 114508 (2016) 
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Formalism is only available for final state energies below three-

particle production threshold

Form of these terms is unknown

Looking forward 
!

(1). Extend formalism to describe three (and more) hadron states 
(2). Use spectrum to constrain S-matrix and calculate 

(3). Calculate many finite-volume matrix elements and determine 
transition amplitudes

Major focus over the last few years
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Formalism is complete for three-scalar systems
Model-independent relation between 	


finite-volume energies and two-and-three particle scattering
MTH and Sharpe 2014, 2015 and Briceño, MTH and Sharpe 2017

E0(L)

E1(L)

E2(L)

Requires that two-particle 	

scattering phase is bounded |�`(E)| < ⇡/2

Derived by analyzing three-particle skeleton expansion

CL(E, ~P ) = + + + · · ·

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+ +

+
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Using LQCD one can estimate the correlator

May be possible to extract total transition rates directly from lattice QCD, 
by applying the Backus-Gilbert method to a suitable correlator

MTH, Meyer and Robaina, to appear

An alternative approach…

The Backus-Gilbert method then gives an estimation of
regularized delta 

function

One then aims to extract
Order of limits  

is important



Backus-Gilbert for total rates
One can construct                such that 

This could have applications in total hadronic widths,  
differential semi-leptonic rates, deep inelastic scattering… neutrino rates?



Backus-Gilbert for total rates
One can construct                such that 

This could have applications in total hadronic widths,  
differential semi-leptonic rates, deep inelastic scattering… neutrino rates?

Million dollar question: How well can one estimate         using Backus-Gilbert?



Backus-Gilbert for total rates
One can construct                such that 

This could have applications in total hadronic widths,  
differential semi-leptonic rates, deep inelastic scattering… neutrino rates?

Million dollar question: How well can one estimate         using Backus-Gilbert?

Here I do not explain the algorithm but only summarize key points: 
(1). Developed by geophysicists Backus and Gilbert to study seismic activity 
!
(2). Technique to solve the inverse problem: 
!
(3). Gives a smoothened version of                 with characteristic width  
!
(4). Preliminary evidence shows reasonable values of      and      could give a 
good estimate of the infinite-volume, zero-width limit
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Summary and Conclusions
Relation between finite-volume matrix elements and transition 
amplitudes is well understood for two-particle states (and three 
particle states are on the way)

This is required for any resonance form factors as well as transitions 
to multi-particle final states

I did not dare to put a nucleus in the initial state, but this is an issue 
for the realistic implementation of LQCD not for this formalism. 
!

Perhaps methods such as lattice EFT could make a nucleus matrix 
element feasible 

Stay tuned for a new approach that directly extracts inclusive 
transition rates
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Our aim is to derive the generalization for arbitrary  
two- and three-particle systems

E1(L)

E2(L)

E3(L)

Potential applications… 
Studying three-particle resonances 

!
!
!

!
Calculating weak decay amplitudes and form factors 

!
Determining three-body interactions 

!

!(782) ! ⇡⇡⇡

N(1440) ! N⇡, N⇡⇡

K ! ⇡⇡⇡

N⇤

NNN three-body forces needed as EFT input 
for studying larger nuclei and nuclear matter
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For now we turn off two-to-three scattering using a symmetry

iM3!3 ⌘ fully connected correlator with  
six external legs amputated and projected on shell

Three-to-three amplitude has kinematic singularities

Three-to-three amplitude has more degrees of freedom

Certain external momenta 
 put this on-shell!

= + · · ·

2 degrees of freedom

12 momentum  
     components

-10 Poincaré generators

8 degrees of freedom

18 momentum  
     components

-10 Poincaré generators
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How can we possibly hope to extract a singular,  
eight-coordinate function using finite-volume energies?

Same degrees of freedom as        .M3!3

(1). We found that the spectrum depends on a modified 
quantity with singularities removed

Kdf,3 6�

Relation to             is known (depends only on on-shell            )M3!3 M2!2

Smooth function (easier to extract)

(    is restricted to finite-volume momenta)

(2). Degrees of freedom encoded in an extended matrix space 

~k, `,m

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)

BOOST

~k
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Three-particle result
At fixed          , finite-volume 	


energies are solutions to
(L, ~P )

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

detk,`,m
h
K�1

df,3 + F3

i
= 0

matrix that depends on known geometric 
functions as well as             .F3 ⌘ M2!2

(2). Use harmonic decomposition + various parametrizations 
to express                   in terms of       unknown parameters  Kdf,3(E

⇤) N
(3). Use quantization condition with lattice (or otherwise) 
determined energies to determine all parameters
(4). Use known relation to recoverM3!3

MTH and Sharpe, Phys. Rev. D92, 114509 (2015)

(1). Use two-particle quantization condition to constrain             
and thus determine 

M2!2

F3(E, ~P ,L)
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det

⇥
K�1

df,3(E
⇤
n) + F3(En, ~P ,L)

⇤
= 0

� �
These are all matrices with indices

~k =
2⇡~n

L
`,m

momentum of 
one particle

angular momentum 
of the other two⌦

F and G are geometric functions
M2,L M2depends on F and

F3 =
F

6!L3
� F

2!L3

1

1 +M2,LG
M2,LF

All of the complication is buried inside F3

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)
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Central drawback is the non-standard nature of Kdf,3

MTH and Sharpe, Phys. Rev. D92, 114509 (2015)

This was resolved in a second publication where we derive an 
integral equation relating………with.…….Kdf,3 M3

M3,L = S

DL + LLKdf,3

1

1 + F3Kdf,3
RL

�
Result was derived by studying an alternative finite-volume correlator 

(uses interpolators that one uses for a scattering amplitude)

trivial modifications  
of        .F3

indicates 
symmetrization

This completes the formal story and confirms that the three-particle spectrum is 
determined by physical scattering amplitudes 

M3 = lim
L!1

����
i✏

M3,L = I[Kdf,3]

Leads to a solvable integral equation
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Weak interactions
MTH and Sharpe,  

Phys. Rev. D 93, 096006 (2016)

E = 3m+
12⇡a

mL3
+ · · ·

Expand the three-particle threshold	

energy in powers of inverse box length

K. Huang and C. Yang, Phys. Rev. 105 (1957) 767-775
Beane, Detmold, Savage, Phys. Rev. D76 (2007) 074507                

Meißner, Rìos and Rusetsky, 
 Phys. Rev. Lett. 114, 091602 (2015)

Reproduced and generalized earlier work based in 	

non-relativistic quantum mechanics
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Assumes two-body potential, unitary limit, P=0, s-wave only

We reproduce the exponent, leading power and overall 
constant using our relativistic formalism
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2. Derive the functional forms of the infinite-volume quantities

follows from matching to 
Effimov wavefunction

unitary amplitude with spectator  
“stealing” some momentum

usymmetrized  
residue factor

s-wave scattering amplitude
~k

~k

= c|A|2
2

m

1

(L)3/2
e�2L/

p
3 + · · ·

�E(L) = c|A|2 3
3/4⇡3/2

3
6

Z

~

k

eiLx̂·~k 1
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3. Evaluate the sum-integral difference with Poisson summation


