Nucleon axial form factors and structure

Constantia Alexandrou University of Cyprus and The Cyprus Institute

IPPP/NuSTEC topical meeting on neutrino-nucleus scattering

Outline

Introduction and Motivation

- Current status of simulations
- Low-lying baryon masses
- Evaluation of matrix elements in lattice QCD

Nucleon charges: g_A , g_s , g_T

3 Nucleon axial form factors: $G_A(Q^2)$ and $G_p(Q^2)$

JLAB (12GeV Upgrade)

RHIC (BNL)

FERMILAB

JPARC

Rich experimental

activities in

major facilities

PSI

ALICE

MAMI

BES III

COMPASS

With simulations at the physical point lattice QCD can provide essential input for the experimental programs.

Quantum ChromoDynamics (QCD)

QCD-Gauge theory of the strong interaction Lagrangian: formulated in terms of quarks and gluons

$$\mathcal{L}_{QCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + \sum_{f=u,d,s,c,b,t} \bar{\psi}_{f} \left(i\gamma^{\mu} D_{\mu} - m_{f} \right) \psi_{f}$$
$$D_{\mu} = \partial_{\mu} - ig \frac{\lambda^{a}}{2} A^{a}_{\mu}$$

Choice of fermion discretisation scheme e.g. Clover, Twisted Mass, Staggered, Domain Wall, Overlap Each has its advantages and disadvantages

Eventually,

- all discretization schemes must agree in the continuum limit $a \rightarrow 0$
- observables extrapolated to the infinite volume limit $L \rightarrow \infty$

Questions we would like to address

With simulations at the physical value of the pion mass there is a number of interesting questions we want to address:

- Can we reproduce known quantities including the excited spectrum of the nucleon and its associated resonances?
- Can we resolve the long-standing issue of the spin content of the nucleon?
- Can we determine accurately fundamental properties of the proton such as its charge and axial radii?
- Can we provide input for experimental searches for new physics?

In this talk I will address two topics:

- The nucleon charges g_A , g_S and g_T
- The nucleon axial form factors $G_A(Q^2)$ and $G_p(Q^2)$

Status of simulations

Size of the symbols according to the value of $m_{\pi}L$: smallest value $m_{\pi}L \sim 3$ and largest $m_{\pi}L \sim 6.7$.

Computational resources

Juelich SuperComputing Centre, Germany Peak performance: 5.9 Petaflop/s 458 752 cores Our time allocation: 65 Million core-h

Swiss National Supercomputing Centre, Switzerland Peak performance: 7.8 PFlops/s 42 176 cores Tesla Graphic cards Our time allocation: 2 Million node-h (equiv. to 200 Million core-h)

Gauss Centre, Stuttgart, Germany Peak performance: 7.42 Petaflop/s 185 088 cores

Our time allocation: 48 Million core-h

Hadron masses

Hadron masses

Three-point functions:

 $G^{\mu\nu}(\Gamma,\vec{q},t_{s},t_{ins}) = \sum_{\vec{x}_{s},\vec{x}_{ins}} e^{i\vec{x}_{ins}\cdot\vec{q}} \Gamma_{\beta\alpha} \langle J_{\alpha}(\vec{x}_{s},t_{s})\mathcal{O}_{\Gamma}^{\mu\nu}(\vec{x}_{ins},t_{ins})\overline{J}_{\beta}(\vec{x}_{0},t_{0}) \rangle$

Three-point functions:

 $G^{\mu
u}(\Gamma, \vec{q}, t_s, t_{
m ins}) = \sum_{\vec{x}_s, \vec{x}_{
m ins}} e^{i\vec{x}_{
m ins}\cdot\vec{q}} \Gamma_{\beta\alpha} \langle J_{\alpha}(\vec{x}_s, t_s) \mathcal{O}^{\mu
u}_{\Gamma}(\vec{x}_{
m ins}, t_{
m ins}) \overline{J}_{\beta}(\vec{x}_0, t_0) \rangle$

Plateau method:

$$R(t_{s}, t_{\text{ins}}, t_{0}) \xrightarrow[(t_{s}-t_{0})\Delta\gg1]{(t_{s}-t_{\text{ins}})\Delta\gg1} \mathcal{M}[1 + \ldots e^{-\Delta(\mathbf{p})(t_{\text{ins}}-t_{0})} + \ldots e^{-\Delta(\mathbf{p}')(t_{s}-t_{\text{ins}})}]$$

Summation method: Summing over *t*_{ins}:

$$\sum_{t_{\text{ins}}=t_0}^{t_{\mathcal{S}}} R(t_{\mathcal{S}}, t_{\text{ins}}, t_0) = \text{Const.} + \mathcal{M}[(t_{\mathcal{S}} - t_0) + \mathcal{O}(e^{-\Delta(\mathbf{p})(t_{\mathcal{S}} - t_0)}) + \mathcal{O}(e^{-\Delta(\mathbf{p}')(t_{\mathcal{S}} - t_0)})].$$

Excited state contributions are suppressed by exponentials decaying with $t_s - t_0$, rather than $t_s - t_{ins}$ and/or $t_{ins} - t_0$

However, one needs to fit the slope rather than to a constant or take differences and then fit to a constant L. Maiani, G. Martinelli, M. L. Paciello, and B. Taglienti, Nucl. Phys. B293, 420 (1987); S. Capitani *et al.*, arXiv:1205.0180

• Fit keeping the first excited state, T. Bhattacharya *et al.*, arXiv:1306.5435

All should yield the same answer in the end of the day!

To ensure ground state dominance need multiple sink-source time separations ranging from 0.9 fm to 1.5 fm

Nucleon isovector charges: g_A, g_s, g_T

- axial-vector operator: $\mathcal{O}_A^a = \overline{\psi}(x)\gamma^\mu\gamma_5\frac{\tau^a}{2}\psi(x)$
- scalar operator: $\mathcal{O}_{S}^{a} = \bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$
- pseudoscalar: $\mathcal{O}_p^a = \bar{\psi}(x)\gamma_5 \frac{\tau^a}{2}\psi(x)$
- tensor operator: $\mathcal{O}_T^a = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^a}{2}\psi(x)$
- \implies extract from matrix element: $\langle N(\vec{p'}) \mathcal{O}_X N(\vec{p}) \rangle |_{q^2=0}$
 - Axial charge g_A Scalar charge g_S Pseudoscalar charge g_p , Tensor charge g_T

(i) isovector combination has no disconnect contributions; (ii) g_A well known experimentally, Goldberger-Treiman relation yields g_p , g_T to be measured at JLab, Predict g_S

Nucleon axial charge g_A

 g_A well known experimentally. It is an iso-vector quantity extracted at zero momentum transfer \rightarrow straight forward to compute in lattice QCD.

Nucleon charges: g_A, g_S

- $N_f = 2$ twisted mass plus clover, $48^3 \times 96$, a = 0.093(1) fm, $m_{\pi} = 131$ MeV
- \sim 9260 statistics for $t_s/a = 10, 12, 14, \sim$ 48000 for $t_s/a = 16$ and \sim 70000 for $t_s/a = 18$
- 5 sink-source time separations ranging from 0.9 fm to 1.7 fm

A. Abdel-Rehim et al. (ETMC):1507.04936, 1507.05068, 1411.6842, 1311.4522

Summary of results on nucleon charges: g_A , g_s , g_T

Disconnected contributions to g_A^q

- $N_f = 2$ twisted mass fermions with a clover term at a physical value of the pion mass, $48^3 \times 96$ and a = 0.093(1) fm
- Intrinsic quark spin: $\Delta \Sigma^q = g^q_A$

Disconnected isoscalar axial charge

Strange axial charge

We find from the plateau method:

- $g_A^{u+d} = 0.595(28)$ (conn.) -0.15(2) (disconn.) with 854,400 statistics
- Combining with the isovector we find: $g_A^u = 0.828(21), g_A^d = -0.387(21)$
- $g_A^s = -0.042(10)$ with 861,200 statistics
- $g_A^c = -0.007(6)$ with 861,200 statistics

Recent results on the electric and magnetic form factors

Isovector form factors

- ETMC using $N_f = 2$ twisted mass fermions (TMF), a = 0.093 fm, $48^3 \times 96$ G_E with $t_s = 1.7$ fm and 66,000 statistics, G_M with $t_s = 1.3$ fm and 9,300 statistics
- LHPC using $N_f = 2 + 1$ clover fermions, a = 0.116 fm, 48^4 , summation method with 3 values of t_s from 0.9 fm to 1.4 fm and $\sim 7,800$ statistics, 1404.4029
- PNDME mixed action HISQ $N_f = 2 + 1 + 1$ and clover valence, a = 0.087 fm, $64^3 \times 96$, summation method with 3 values of t_s from 0.9 fm to 1.4 fm and $\sim 7,00$ HP and $\sim 85,000$ NP, Yong-Chull Jang, Lattice 2016
- PACS using $N_f = 2 + 1$ clover fermions, a = 0.085 fm, $96^3 \times 192$, $t_s = 1.3$ fm, 9,300 statistics, Y. Kuramashi, Lattice 2016

Recent results on the electric and magnetic form factors

Isoscalar form factors - connected contributions

• ETMC using $N_f = 2$ twisted mass fermions (TMF), a = 0.093 fm, $48^3 \times 96$ G_E with $t_s = 1.7$ fm and 66,000 statistics, G_M with $t_s = 1.3$ fm and 9,300 statistics

Recent results on the electric and magnetic form factors

Isoscalar form factors - connected contributions

• ETMC using $N_f = 2$ twisted mass fermions (TMF), a = 0.093 fm, $48^3 \times 96$ G_E with $t_s = 1.7$ fm and 66,000 statistics, G_M with $t_s = 1.3$ fm and 9,300 statistics

$$N(p',s')|A_{\mu}|N(p,s)\rangle = i\sqrt{\frac{m_{N}^{2}}{E_{N}(\vec{p}')E_{N}(\vec{p})}}\bar{u}_{N}(p',s')\left(\gamma_{\mu}G_{A}(Q^{2}) - i\frac{Q_{\mu}}{2m_{N}}G_{p}(Q^{2})\right)\gamma_{5}u_{N}(p,s)$$

ETMC using $N_f = 2$ twisted mass fermions (TMF), a = 0.093 fm, $48^3 \times 96$

• For the connected: largest $t_s = 1.3$ fm and 9,300 statistics

• For the disconnected: all t_s , $\mathcal{O}(850, 000)$ statistics

$$N(p',s')|A_{\mu}|N(p,s)\rangle = i\sqrt{\frac{m_{N}^{2}}{E_{N}(\vec{p}')E_{N}(\vec{p})}}\bar{u}_{N}(p',s')\left(\gamma_{\mu}G_{A}(Q^{2}) - i\frac{Q_{\mu}}{2m_{N}}G_{p}(Q^{2})\right)\gamma_{5}u_{N}(p,s)$$

ETMC using $N_f = 2$ twisted mass fermions (TMF), a = 0.093 fm, $48^3 \times 96$

- For the connected: largest $t_s = 1.3$ fm and 9,300 statistics
- For the disconnected: all t_s , $\mathcal{O}(850, 000)$ statistics

$$N(p',s')|A_{\mu}|N(p,s)\rangle = i\sqrt{\frac{m_{N}^{2}}{E_{N}(\vec{p}')E_{N}(\vec{p})}}\bar{u}_{N}(p',s')\left(\gamma_{\mu}G_{A}(Q^{2}) - i\frac{Q_{\mu}}{2m_{N}}G_{p}(Q^{2})\right)\gamma_{5}u_{N}(p,s)$$

ETMC using $N_f = 2$ twisted mass fermions (TMF), a = 0.093 fm, $48^3 \times 96$

- For the connected: largest $t_s = 1.3$ fm and 9,300 statistics
- For the disconnected: all t_s , $\mathcal{O}(850, 000)$ statistics

Isovector

$$N(p',s')|A_{\mu}|N(p,s)\rangle = i\sqrt{\frac{m_{N}^{2}}{E_{N}(\vec{p}')E_{N}(\vec{p})}}\bar{u}_{N}(p',s')\left(\gamma_{\mu}G_{A}(Q^{2}) - i\frac{Q_{\mu}}{2m_{N}}G_{p}(Q^{2})\right)\gamma_{5}u_{N}(p,s)$$

ETMC using $N_f = 2$ twisted mass fermions (TMF), a = 0.093 fm, $48^3 \times 96$

- For the connected: largest $t_s = 1.3$ fm and 9,300 statistics
- For the disconnected: all t_s , $\mathcal{O}(850, 000)$ statistics

Isoscalar connected

Isoscalar and strange nucleon axial form factors

- ETMC using $N_f = 2$ twisted mass fermions (TMF), a = 0.093 fm, $48^3 \times 96$
- For the connected: largest $t_s = 1.3$ fm and 9,300 statistics
- For the disconnected: all t_s , $\mathcal{O}(850, 000)$ statistics

Isoscalar and strange form factors

Recent results on nucleon axial form factors

• ETMC using $N_f = 2$ twisted mass fermions (TMF), a = 0.093 fm, $48^3 \times 96$, C. A. *et al.* (2016), arXiv:1702.00984

• PNDME using mixed action of $N_f = 2 + 1 + 1$ HISQ sea fermions and clover valence and a = 0.09 (64³ × 96), and 0.06 (96³ × 192) fm, Yong-Chull Jang, *et al.* (2016)

Comparison with other lattice QCD results

- ETMC using $N_f = 2$ twisted mass fermions (TMF), a = 0.093 fm, $48^3 \times 96$, C. A. *et al.* (2016), arXiv:1702.00984
- LHPC mixed action of $N_f = 2 + 1$ staggered sea and domain wall fermions, a = 0.12 fm, $28^3 \times 64$, Bratt *et al.* (2010), arXiv:1001.3620
- LHPC using $N_f = 2 + 1$ clover fermions, a = 0.114 fm, $32^3 \times 96$, J. Green *et al.*, (2017), arXiv:1703.06703
- PNDME using mixed action of $N_f = 2 + 1 + 1$ HISQ sea fermions and clover valence and a = 0.09 (64³ × 96), and 0.06 fm, Yong-Chull Jang, *et al.* Lattice 2016
- Mainz using $N_f = 2$ clover with a = 0.05 fm $48^3 \times 96$ Lattice 2016

Comparison of nucleon disconnected axial form factors

Disconnected contributions

• ETMC using $N_f = 2$ twisted mass fermions (TMF), a = 0.093 fm, $48^3 \times 96$, a = 0.093 fm, $m_{\pi} = 131$ MeV, 855,000 statistics

• LHPC using $N_f = 2 + 1$ clover fermions, $32^3 \times 96$, a = 0.114 fm, $m_{\pi} = 317$ MeV, 98,700 statistics

Comparison of nucleon disconnected axial form factors

Disconnected contributions

Large disconnected contributions

• ETMC using $N_f = 2$ twisted mass fermions (TMF), a = 0.093 fm, $48^3 \times 96$, a = 0.093 fm, $m_{\pi} = 131$ MeV, 855,000 statistics

• LHPC using $N_f = 2 + 1$ clover fermions, $32^3 \times 96$, a = 0.114 fm, $m_{\pi} = 317$ MeV, 98,700 statistics

Fits to isovector lattice QCD results

Perform fits to lattice results using:

$$G_{A}(Q^{2}) = rac{g_{A}}{(1+rac{Q^{2}}{m_{A}^{2}})^{2}},$$

$$G_{
ho}(Q^2) = G_{
m A}(Q^2) rac{C}{Q^2 + m_{
ho}^2}$$

If pole dominance is satsfied then ${\it C}=4m_N^2$ and $m_p=m_\pi o$ allow to vary

Experimental bands

- $m_A = 1.077(39)$ GeV A. Liesenfeld *et al.*, using pion-photoproduction data, Phys. Lett., B468:20, 1999.
- $m_A = 1.350(170)$ GeV using $\mu \nu$ charged current quasielastic scattering (MiniBooNE), Aguilar-Arevalo *et al.*, Phys. Rev. D 81 (2010).
- $m_A = 1.010(240)$ GeV using neutrino-nucleus scattering, Aaron S. Meyer, Minerba Betancourt, Richard Gran, and Richard J. Hill, Phys. Rev., D93(11) 113015 (2016)

Strange and charm quark axial form factors

Strange and charm quark axial form factors

Perform fits to lattice results using:

Conclusions and Future Perspectives

- Computation of g_A at the physical point allows direct comparison with experiment
- Provide predictions for g_s , g_T , etc.
- Computation of $G_A(Q^2)$ and $G_p(Q^2)$
 - Disconnected contributions non-zero and especially large for G_p
 - Excited state contributions and finite volume dependence need to be further investigated especially for G_p
- A number of collaborations are in process of finalizing their results including the physical point.

Extended Twisted Mass Collaboration

European Twisted Mass Collaboration (ETMC)

Cyprus (Univ. of Cyprus, Cyprus Inst.), France (Orsay, Grenoble), Germany (Berlin/Zeuthen, Bonn, Frankfurt, Hamburg, Münster), Italy (Rome I, II, III, Trento), Netherlands (Groningen), Poland (Poznan), Spain (Valencia), Switzerland (Bern), UK (Liverpool)

Collaborators:

S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K.Jansen, Ch. Kallidonis, G. Koutsou, A. Vaquero