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A dangerous journey

into uncharted waters.
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CP violation
There are only very few parameters in the νSM which
can violate CP

• CKM phase – measured to be γ ≃ 70◦

• θ of the QCD vacuum – measured to be < 10−10

• Dirac phase of neutrino mixing

• Possibly: 2 Majorana phases of neutrinos

At the same time we know that the CKM phase is not
responsible for the Baryon Asymmetry of the
Universe. . .
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What can we learn from that?
– If we refute three flavor oscillation with
significance, we have found new physics, but this
requires great precision.

– If we confirm three flavor oscillation with great
precision, we need the context of specific models to
learn anything about BSM physics.

Corollary: Only if we do this precisely we really will
learn something!
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The way forward

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2016 2021 2026 2031 2036

10.0%

5.0%

3.8%

3.2%

2.8%

T
ot

al
 s

ig
na

l e
ve

nt
s

st
at

. e
rr

or

Exps. Running 50% in neutrino mode

CD-R at our bf

GLoBES 2016

T2K
T2K II
NOvA
T2K(II)+NOvA
DUNE

sin2θ12=0.304

 sin2(2θ13)=0.085

 sin2θ23=0.452

δCP=-π/2

∆m2
21=7.5x10-5 eV2

∆m2
31=2.457x10-3 eV2

Clearly, we are on
the (slow) road to-
wards 3% measure-
ments of the event
rates

Translating this into
a 3% measurements
of the oscillation
probability is very
difficult

Note, T2HK would reach 1000 νe signal events very
quickly.
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The basic concept

In order to measure CP violation we need to
reconstruct one out of these

P (νµ → νe) orP (νe → νµ)

and one out of these

P (ν̄µ → ν̄e) orP (ν̄e → ν̄µ)

and we’d like to do that at the percent level accuracy
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The reality

We do not measure probabilities, but event rates!

Rα
β(Evis) = N

∫
dE Φα(E) σβ(E,Evis) ǫβ(E)P (να → νβ, E)

In order the reconstruct P , we have to know

• N – overall normalization (fiducial mass)

• Φα – flux of να
• σβ – x-section for νβ
• ǫβ – detection efficiency for νβ

Note: σβǫβ always appears in that combination, hence
we can define an effective cross section σ̃β := σβǫβ
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The problem

Even if we ignore all energy dependencies of
efficiencies, x-sections etc., we generally can not
expect to know any φ or any σ̃. Also, we won’t know
any kind of ratio

Φα

Φᾱ

or
Φα

Φβ

nor
σ̃α
σ̃ᾱ

or
σ̃α
σ̃β

Note: Even if we may be able to know σe/σµ from
theory, we won’t know the corresponding ratio of

efficiencies ǫe/ǫµ
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The solution
Measure the un-oscillated event rate at a near location
and everything is fine, since all uncertainties will
cancel, (provided the detectors are identical and have
the same acceptance)

Rα
α(far)L

2

Rα
α(near)

=
NfarΦα σ̃α P (να → να)

NnearΦα σ̃α1

Rα
α(far)L

2

Rα
α(near)

=
Nfar

Nnear

P (να → να)

And the error on Nfar

Nnear

will cancel in the ν to ν̄

comparison. Real world example: Daya Bay.
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Some practical issues

• Same acceptance may require a not-so-near near
detector

• Near and far detector cannot be really identical

• Energy dependencies will remain
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But . . .
This all works only for disappearance measurements!

Rα
β(far)L

2

Rα
β(near)

=
NfarΦα σ̃β P (να → νβ)

NnearΦα σ̃α 1

Rα
β(far)L

2

Rα
β(near)

=
Nfar σ̃β P (να → νβ)

Nnear σ̃α 1

Since σ̃ will be different for ν and ν̄, this is a serious
problem. And we can not measure σ̃β in a beam of να.

NB: Using many different event samples to constrain
the interaction model requires that we have a reliable
cross section model.
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Neutrino cross sections
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Using current cross
section uncertainties and
a perfect near detector.

Appearance experiments
using a (nearly) flavor
pure beam can not rely
on a near detector to
predict the signal at the
far site!

Differences between νe and νµ are significant below
1 GeV, see e.g. Day, McFarland, 2012
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Nuclear effects – example
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In elastic scattering
a certain number of
neutrons is made

Neutrons will be
largely invisible even
in a liquid argon TPC

⇒ missing energy

We can correct for the missing energy IF we know the
mean neutron number and energy made in the
event. . .
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Theory and cross sections

Theory is cheap, but multi-nucleon systems and their
dynamic response are a hard problem and there is not
a huge number of people with expertise working on
this. . .

Any result will contain as-
sumptions, which are not
based on controlled approxi-
mations.
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Generators
Many talks on this topic, key issues

• Tremendous progress in the past years

• Most of them implement very similar physics
(exception GiBUU)

• Tuning is a central part in this game

• Once tuned, different physics models often yield
same result

• Tuning has to be repeated with each new data set
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Corollary:
Without data generators are not reliable, ever.
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Give me a lever long enough and a fulcrum on which
to place it, and I shall move the world.

Archimedes, ca. 250BC
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Towards precise data

Needs better neutrino sources

• Sub-percent beam flux
normalization

• Very high statistics needed to
map phase space

• Neutrinos and antineutrinos

• νµ and νe

One (the only?) source which can deliver all that is a
muon storage ring, aka nuSTORM.
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nuSTORM in numbers
Beam flux known to better than 1%

µ
+

µ
−

Channel Nevts Channel Nevts

ν̄µ NC 1,174,710 ν̄e NC 1,002,240

νe NC 1,817,810 νµ NC 2,074,930

ν̄µ CC 3,030,510 ν̄e CC 2,519,840

νe CC 5,188,050 νµ CC 6,060,580

π
+

π
−

νµ NC 14,384,192 ν̄µ NC 6,986,343

νµ CC 41,053,300 ν̄µ CC 19,939,704

nuSTORM collab. 2013

Approximately 3-5 years running for each polarity
with a 100 t near detector at 50 m from the storage ring
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Outlook
Neutrino oscillation is solid evidence for new physics

• Precision measurements have the best potential to
uncover even “newer” physics – either by finding
discrepancies or correlations among results

• This will require unprecedented levels of
accuracy in our understanding of
neutrino-nucleus interactions.

Are near detectors alone enough?
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