LAr TPC reconstruction and systematics for SBN*

Andy Furmanski IPPP/NuSTEC meeting 18th April 2017 - Durham, UK

* shortened from "Reconstruction of neutrino events in Liquid Argon and their impact on short-baseline sterile-neutrino oscillation searches"

The SBN project

- Three LAr TPCs in the Booster Neutrino Beam at Fermilab
- Almost 1kt total liquid argon!

USEDNIAL DESERVATION DESERVAT

arXiv:1503.01520

SBN appearance

- ICARUS predictions for single-electron events
 - Left: only TPC-based cosmic tagging. Right: include PMT system and an external tagger

SBN sensitivity

- Sensitivity to v_e appearance
- Only detector systematics considered are due to cosmics and "dirt" events
 - Dirt = anything outside the active TPC
- Missing uncorrelated detector effects

LArTPC reconstruction

- Facts:
 - LArTPC provides high-resolution calorimetric information
 - Electrons and photons shower in Lar
 - Muons/protons/pions all form tracks
 - SBN detectors all on-surface high cosmic backgrounds
- General strategy:
 - 1. Find hits above noise baseline
 - 2. Cluster hits, determine track-like or shower-like
 - 3. Match 2D views to form 3D objects
 - 4. Fit tracks (Kalman filter, etc) PID from dE/dx
 - 5. Determine shower energies/directions
 - 6. Group tracks/showers in an "interaction"

(mis-)reconstruction effects

Previous LAr measurements

Semi-automated reconstruction

- ArgoNeuT made good use of "semi-automated" techniques
 - Cluster by hand, then proceed as usual
- This was most powerful for showers

8

Proton reconstruction

- ArgoNeuT: semi-automated proton reconstruction
- 21MeV KE threshold 200 100 150 2000 1500 1000 O. Palamara – NuInt 2014 500 ArgoNeuT \overline{v} -mode \overline{v} -flux, 0π -CC, Preliminary 2000 21 MeV proton threshold GiBUU Prediction: 1500 QE 1000 Delta highRES PRELIMINARY 500 1-pi bgr DIS 2p2h-NN 0.1 Note: 2p2h component has large uncertainties 0.05 0 2 3 0 1 4 5 6 Number of outgoing protons

Fully automated reconstruction

 ICARUS and ArgoNeuT both demonstrated fully automated track reconstruction

Recent developments

MicroBooNE automated event selections

- Summer 2016: CC-inclusive event selections fully automated
 - Muon only, no hadronic part
- Utilise PMT system cosmic rejection

Pandora reconstruction package

- Pandora incorporated into LArSoft
 - Used in MicroBooNE CC-inclusive selection
- Well understood mature reconstruction algorithms
 - Tuned to work on real data
- Shown to have good efficiency
 - For single particles, and neutrino interactions

Andy Furmanski

13

Proton identification

MICROBOONE-NOTE-1025-PUB

- Pandora reconstruction of proton tracks in MicroBooNE
- BDT-based discriminator identifies protons with high efficiency

Uncertainties:

- MC needed to correct for theselost protons
- mis-ID protons counted as pions energy wrong, or muons – event topology wrong

Multiple Coulomb Scattering

- MCS Multiple Coulomb Scattering
 - Momentum/direction/PID information from "wobbliness" of tracks
- Allows you to utilise non-contained tracks

MCS – proof-of-principle

- Papers from ICARUS and MicroBooNE: demonstrated on data
 - Some hand-scanning required
- Resolutions of 10-20%
 - Depends on momentum, length of contained track

Testbeam measurements

- LArIAT Liquid Argon In A Testbeam
- Measuring pion-argon, proton-argon cross sections
- **Parallel test** of similar reconstruction methods
- Informs simulation of reinteractions in argon
 - Can select pions through identifying interactions
- Also informs FSI modelling for generators!

600

Run I (May 1, 2015-July 4, 2015)

200

400

1200

1000

Reconstructed Kinetic Energy (MeV)

800

Shower reconstruction

electron/photon separation

- ArgoNeuT show dE/dx at start of shower can distinguish e/gamma
- Assumption of the power of this was made in the SBN proposal – it was correct!

Michel electrons

Neutral pions (fully-automated)

Shower clustering

- Blurred clustering gaussian blurring of hits
- Easier to cluster charge together
- Being studied for DUNE

T. Yang, ICHEP 2016

Other detector effects

Noise removal

Andy Furmanski

24

Impact of noise levels

- Noise can largely be **software-filtered**
 - But some impact on signal
- **Highly parallel tracks** can be removed when filtering correlated noise
 - MicroBooNE added hardware noise filtering over the summer to prevent this
 - Important to do for SBND and ICARUS too
- Differences in noise levels and noise filtering can impact efficiency matching between detectors
- Hit efficiencies impact **shower energy resolution**

Alternate reconstruction paths

Wire-cell reconstruction

- Direct-to-3D approach
 - Makes 3D space points which are turned into tracks/showers
- Likely to outperform "traditional" reconstruction in high-multiplicity events
- High hopes for showers
- Under study in MicroBooNE

Deep learning techniques

- Another alternative to traditional reconstruction
- High-resolution images + sophisticated imagerecognition networks
 - Works well for google searches, voice recognition, etc

Deep Learning proof-of-principle

- MicroBooNE MC (with data cosmics overlaid) shows very good efficiency
- Can do PID for you!

Yellow –true neutrino interaction Red – identified neutrino ROI

JINST 12:03,P03011 (2017)

Deep learning at DUNE

ProtoDUNE simulation demonstrating "semantic segmentation"

How does this all help?

How does this all help?

Conclusions

- LArTPCs provide lots of information
- Reconstruction can be hard
- Key techniques being demonstrated
- Alternative reconstruction methods under investigation
 - Wire-cell and deep learning
- Detector systematics expected to be under control for SBN oscillation searches
- Looking forward to having two more detectors to play with!

Thank you

SBN detector (un)correlations

- Different sizes and shapes
 - Contained track efficiency/resolution
 - Space charge distortions
- Readout electronics
 - Noise differences
 - Calorimetry resolution
- Light collection/cosmic tagging systems
 - Timing precision
 - Cosmic rejection efficiency

These are now under study -

cannot be fully understood until

all three detectors have data!

Impact on SBN oscillations

- Impact of uncorrelated detector effects is predicted to be small
- Testing of previous assumptions in data
- Assumptions seem to hold
 - Noise levels under control
 - MCS verified to work in data
 - e/gamma separation demonstrated in ArgoNeuT
 - Fully automated reconstruction and selection demonstrated in MicroBooNE – efficiencies good but needs some work

Pion interactions

• Taken from talk – A. Chatterjee, ICHEP, 2016

