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The SBN project

e Three LAr TPCs in the Booster Neutrino Beam at
Fermilab
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SBN appearance

ICARUS predictions for single-electron events

— Left: only TPC-based cosmic tagging. Right:
include PMT system and an external tagger
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SBN sensitivity

* Sensitivity to v,
appearance

* Only detector
systematics
considered are due to
cosmics and “dirt”
events

— Dirt = anything
outside the active
TPC

* Missing —
uncorrelated detector
effects
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LArTPC reconstruction

* Facts:
— LArTPC provides high-resolution calorimetric information

— Electrons and photons shower in Lar
* Muons/protons/pions all form tracks

— SBN detectors all on-surface — high cosmic backgrounds
* General strategy:
Find hits above noise baseline
Cluster hits, determine track-like or shower-like
Match 2D views to form 3D objects
Fit tracks (Kalman filter, etc) — PID from dE/dx
Determine shower energies/directions
Group tracks/showers in an “interaction”

Ok wnNeE
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(mis-)reconstruction effects

Signal efficiency muon constraint —
momentum
resolution etc Shower energy
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Previous LAr measurements
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Semi-automated reconstruction

* ArgoNeuT made good use of “semi-automated”
techniques

— Cluster by hand, then proceed as usual
* This was most powerful for showers
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Proton reconstruction

* ArgoNeuT: semi-automated proton
reconstruction

e 21MeV KE threshold

O. Palamara — Nuint 2014

ArgoNeuT v-mode v-flux, On-CC, Preliminary
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Fully automated reconstruction

* |[CARUS and ArgoNeuT both demonstrated
fully automated track reconstruction

PoS (GSSI14) 019

(a)

(b)
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Recent developments
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MicroBooNE automated event selections

e Summer 2016: CC-inclusive event selections

fully automated

— Muon only, no hadronic part

e Utilise PMT system — cosmic rejection
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Pandora reconstruction package

 Pandora incorporated into LArSoft
— Used in MicroBooNE CC-inclusive selection

 Well understood mature reconstruction algorithms
— Tuned to work on real data

* Shown to have good efficiency
— For single particles, and neutrino interactions

Losing hadronic
energy here —

correct with
MC
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Proton identification

MicroBooNE Simulation, Preliminary
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* Pandora reconstruction of proton

tracks in MicroBooNE

e BDT-based discriminator identifies

protons with high efficiency

Uncertainties:
e MC needed to correct for these
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lost protons

* mis-ID protons counted as pions —

— energy wrong, or muons — event

topology wrong
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Multiple Coulomb Scattering

* MCS — Multiple Coulomb Scattering

— Momentum/direction/PID information from
“wobbliness” of tracks

* Allows you to utilise non-contained tracks

— Assumed in the SBN proposalé>
\

-~
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~
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~

A particle scattering as it traverses a
length of material.

The average angular scatter
depends on the particle’s

momentum \
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MCS — proof-of-principle

e Papers from ICARUS and MicroBooNE:
demonstrated on data

— Some hand-scanning required

* Resolutions of 10-20%
— Depends on momentum, length of contained track
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Testbeam measurements

* LArIAT —Liquid Argon In Run | (May 1, 2015-July 4, 2015)
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Shower reconstruction
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electron/photon separation

* ArgoNeuT show dE/dx at start of shower can
distinguish e/gamma

* Assumption of the power of this was made in the
SBN proposal — it was correct!

— Simulated Electron Candidates
—  Simulated Gammas
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Phys. Rev. D 95, 072005 (2017) |
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Michel electrons

Reconstructed Michel Energy Spectrum
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Peak shifted down — some
charge lost due to radiative
losses which is difficult to cluster

Run 1149 Event 158. August 6 2015 17:52

High tail — accidentally
pull in some charge
deposited by the muon
Bragg peak
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Neutral pions (fully-automated)

MicroBooNE

MICROBOONE-NOTE-1012-PUB

Still remaining — calibration
of energy scale

MicroBooNE

(hit size increased by x2)
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Shower clustering

* Blurred clustering —
gaussian blurring of hits

nﬁnﬁ
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shower
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e Easier to cluster charge
together

lilllilIlilllilllf!llilllillIillli

lilllf
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* Being studied for DUNE
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T. Yang, ICHEP 2016

MANCHESTER
1824 Andy Furmanski 22

The University of Manchester



Other detector effects
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Noise removal

Before noise removal
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Impact of noise levels

* Noise can largely be software-filtered
— But some impact on signal

* Highly parallel tracks can be removed when
filtering correlated noise

— MicroBooNE added hardware noise filtering over the
summer to prevent this

— Important to do for SBND and ICARUS too

e Differences in noise levels and noise filtering can
impact efficiency matching between detectors

* Hit efficiencies impact shower energy resolution
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Alternate reconstruction paths
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Wire-cell reconstruction

* Direct-to-3D approach

— Makes 3D space points which are turned into
tracks/showers

* Likely to outperform “traditional”
reconstruction in high-multiplicity events

* High hopes for showers
* Under study in MicroBooNE

HBooNE _

Run 1463 Event 23. August 15t 2015 10:37
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Deep learning techniques

* Another alternative to traditional reconstruction
* High-resolution images + sophisticated image-
recognition networks
— Works well for google searches, voice recognition, etc

Convolution
Pooling

Other
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Deep Learning proof-of-principle

 MicroBooNE MC (with data cosmics overlaid)
shows very good efficiency

 Cando PID for you!

Red — identified
neutrino ROI

MicroBooNE y
o ] JINST 12:03,P03011 (2017)
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Deep learning at DUNE

* ProtoDUNE simulation demonstrating “semantic
segmentation”

input: 2D ADC

ProtoDUNE sim., LArSoft CNN output
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How does this all help?

Signal efficiency

muon constraint —

momentum
resolution etc

Shower energy
resolution, hit
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How does this all help?

]
muon constraint — IIVICS, range, calorimetry

Signal efficiency

momentum .
resolution etc Shower energy Michel, nt
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Conclusions

 LArTPCs provide lots of information
e Reconstruction can be hard

* Key techniques being demonstrated

 Alternative reconstruction methods under
Investigation

— Wire-cell and deep learning

* Detector systematics expected to be under
control for SBN oscillation searches

* Looking forward to having two more detectors to
play with!
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Thank you
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SBN detector (un)correlations

e Different sizes and shapes
— Contained track efficiency/resolution
— Space charge distortions

e Readout electronics
— Noise differences
— Calorimetry resolution

* Light collection/cosmic tagging systems
— Timing precision
— Cosmic rejection efficiency
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Impact on SBN oscillations

* Impact of uncorrelated detector effects is
predicted to be small

e Testing of previous assumptions in data

* Assumptions seem to hold
— Noise levels under control
— MCS verified to work in data
— e/gamma separation demonstrated in ArgoNeuT

— Fully automated reconstruction and selection
demonstrated in MicroBooNE — efficiencies good but

needs some work
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Pion interactions

 Taken from talk — A. Chatterjee, ICHEP, 2016

Pion Production Candidate Pion - Elastic Scattering Candidate




