Evgeny Epelbaum, RUB

IPPP/NuSTEC topical meeting on neutrino-nucleus scattering Durham, UK, April 18-20, 2017

Towards ab-initio chiral EFT calculations of neutrino-nucleus reactions

- based on: Krebs, EE, Meißner, Annals Phys. 378 (2017) 317 -

- Introduction
- Nuclear Hamiltonian
- An overview of electroweak current operators
- Ongoing work on few-N systems
- Summary and outlook

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Q, Weinberg, Gasser, Leutwyler, Meißner, ...

 $Q = \frac{\text{momenta of external particles or } M_{\pi} \sim 140 \text{ MeV}}{\text{breakdown scale } \Lambda_{b} \ [\sim 600...700 \text{ MeV}]}$

Write down L_{eff} [π , N, ...], identify relevant diagrams at a given order, do Feynman calculus, fit LECs to exp data, make predictions...

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Q,

Weinberg, Gasser, Leutwyler, Meißner, ...

momenta of external particles or $M_{\pi} \sim 140 \text{ MeV}$

breakdown scale Λ_b [~ 600...700 MeV]

Write down $L_{eff}[\pi, N, ...]$, identify relevant diagrams at a given order, do Feynman calculus, fit LECs to exp data, make predictions...

 V_{eff}

 V_{eff} = / + × + ···

Veff

Chiral EFT for nuclei: expansion for nuclear forces + resummation (Schrödinger equation) Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived in ChPT}}\right] |\Psi\rangle = E|\Psi\rangle$$

- error estimations
- systematically improvable
- unified approach for $\pi\pi$, π N, NN
- consistent many-body forces and currents

Notice: LS equation with a truncated potential requires infinitely many CTs are needed to absorb all UV divergences from iterations

• Heavy-baryon chiral Lagrangian with pions and nucleons as the only explicit DOF:

Low-energy constants:

- the pionic ones, l_i , are (sufficiently) well known
- the πN LECs relevant for nuclear forces to N⁴LO, $c_{1,2,3,4}$, $d_{1+2,3,5,14-15}$ and $e_{14,17}$, are fairly well known from πN scattering
 - \rightarrow long-range parts of the forces are predicted in a parameter-free way
- exchange currents at N³LO involve further LECs $d_{2,6,8,9,15,21,22,23}$; the e.m. ones are known from radiative π -prod., the axial ones $d_{2,6} d_{15} 2d_{23}$ are unknown (?)
- (bare) LECs $\tilde{C}_{1,2}$, C_i and D_i are extracted from NN data
- (bare) LECs c_D and c_E can be fixed from A > 2-data

• Heavy-baryon chiral Lagrangian with pions and nucleons as the only explicit DOF:

Low-energy constants:

- the pionic ones, l_i , are (sufficiently) well known
- the πN LECs relevant for nuclear forces to N⁴LO, $c_{1,2,3,4}$, $d_{1+2,3,5,14-15}$ and $e_{14,17}$, are fairly well known from πN scattering
 - → long-range parts of the forces are predicted in a parameter-free way
- exchange currents at N³LO involve further LECs $d_{2,6,8,9,15,21,22,23}$; the e.m. ones are known from radiative π -prod., the axial ones $d_{2,6} d_{15} 2d_{23}$ are unknown (?)
- (bare) LECs $\tilde{C}_{1,2}$, C_i and D_i are extracted from NN data
- (bare) LECs c_D and c_E can be fixed from A > 2-data
- Nuclear potentials & currents are obtained by integrating out pion fields using the chiral expansion [method of UT, TOPT, matching to S-matrix]

• Heavy-baryon chiral Lagrangian with pions and nucleons as the only explicit DOF:

Low-energy constants:

- the pionic ones, l_i , are (sufficiently) well known
- the πN LECs relevant for nuclear forces to N⁴LO, $c_{1,2,3,4}$, $d_{1+2,3,5,14-15}$ and $e_{14,17}$, are fairly well known from πN scattering
 - \rightarrow long-range parts of the forces are predicted in a parameter-free way
- exchange currents at N³LO involve further LECs $d_{2,6,8,9,15,21,22,23}$; the e.m. ones are known from radiative π -prod., the axial ones $d_{2,6} d_{15} 2d_{23}$ are unknown (?)
- (bare) LECs $\tilde{C}_{1,2}$, C_i and D_i are extracted from NN data
- (bare) LECs c_D and c_E can be fixed from A > 2-data
- Nuclear potentials & currents are obtained by integrating out pion fields using the chiral expansion [method of UT, TOPT, matching to S-matrix]
- Treating $\Delta(1232)$ as an explicit DOF allows one to re-sum certain classes of diagrams and to improve convergence of the EFT expansion

Chiral expansion of the nuclear forces [W-counting]

EE, Krebs, Meißner, PRL 115 (2015) 122301 Entem et al., PRC 91 (2015) 014002; arXiv:1703.05454 under investigation...

Chiral EFT in the strong sector [W-counting]

• Status in the strong sector: accurate and precise NN forces at fifth order in the chiral expansion [EE, Krebs, Meißner, PRL 115 (2015) 122301; Entem et al., PRC 91 (2015) 014002, arXiv:1703.05454]

Selected neutron-proton observables at E_{lab} = 143 MeV

- Clear evidence of the chiral 2π exchange
- Simple approach to quantify truncation errors (without relying on Λ-variation)
- Inclusion of the three-nucleon force and extension of calculations to heavier nuclei in progress [LENPIC]

Nuclear current operators in chiral EFT

$p \xrightarrow{\mu} A^{b}_{\mu} n$

EM currents:

- Park, Min, Rho '95 (threshold kinematics, incomplete...)
- Kölling, EE, Krebs, Meißner, PRC 80 (09) 045502; 86 (12) 047001
- Jlab-Pisa group (TOPT), Pastore et al. '08 '11

Axial currents:

- Park, Min, Rho '93 (threshold kinematics, incomplete...)
- Krebs, EE, Meißner, Annals Phys. 378 (2017) 317
- Jlab-Pisa group (TOPT), Baroni et al. '16

(Our) requirements on the current operators

- must be off-shell consistent with the forces
- should be **renormalized** (exploit unitary ambiguity)
- (cutoff) regularization of the forces and currents should **maintain the symmetry** (cont. equation)

Method of UT for nuclear forces

- Begin with the $\mathcal{L}_{eff}[\pi, N]$ without external fields

Method of UT for nuclear forces

- Begin with the $\mathcal{L}_{eff}[\pi, N]$ without external fields
- Apply UT in Fock space to decouple purely nucleonic states [model space] from the rest

$$H \to \tilde{H} = U^{\dagger} \left(\bigcup_{\substack{n \to p \text{ space}}} \right) U = \left(\begin{matrix} \tilde{H}_{\text{nucl}} & 0 \\ 0 & \tilde{H}_{\text{rest}} \end{matrix} \right)$$

Using Okubo's minimal parametrization of U in terms of $A = \lambda A \eta$ leads to the

decoupling equation: λ

$$(H - [A, H] - AHA)\eta = 0$$

which is solved perturbatively by means of the chiral expansion

Method of UT for nuclear forces

- Begin with the $\mathcal{L}_{eff}[\pi, N]$ without external fields
- Apply UT in Fock space to decouple purely nucleonic states [model space] from the rest

$$H \to \tilde{H} = U^{\dagger} \left(\bigcup_{\substack{n \to p \text{ space}}} \right) U = \left(\begin{array}{c} \tilde{H}_{\text{nucl}} & 0 \\ 0 & \tilde{H}_{\text{rest}} \end{array} \right)$$

Using Okubo's minimal parametrization of U in terms of $A = \lambda A \eta$ leads to the

decoupling equation: $\lambda(H - [A, H] - A)$

$$(H - [A, H] - AHA)\eta = 0$$

|....| X....|

which is solved perturbatively by means of the chiral expansion

- Apply all possible additional UTs on the n-subspace consistent with a given chiral order [6 angles α_i for static N³LO contributions]
- Renormalizability of the potentials [all 1/(d-4) poles must be canceled by the c.t. from \mathcal{L}_{eff}]

 \rightarrow fixes some of the α_i and leads to unique (static) expressions

• Switch on external sources s, p, r_{μ}, l_{μ} and consider *local* chiral rotations:

 $\begin{aligned} r_{\mu} &\to r'_{\mu} = R r_{\mu} R^{\dagger} + i R \partial_{\mu} R^{\dagger} , \qquad l_{\mu} \to l'_{\mu} = L l_{\mu} L^{\dagger} + i L \partial_{\mu} L^{\dagger} , \\ s + i p &\to s' + i p' = R(s + i p) L^{\dagger} , \qquad s - i p \to s' - i p' = L(s - i p) R^{\dagger} \end{aligned}$

The sources can be conveniently rewritten via $v_{\mu} = \frac{1}{2} (r_{\mu} + l_{\mu})$, $a_{\mu} = \frac{1}{2} (r_{\mu} - l_{\mu})$ with:

$$v_{\mu} = v_{\mu}^{(s)} + \frac{1}{2} \boldsymbol{\tau} \cdot \boldsymbol{v}_{\mu}, \qquad a_{\mu} = \frac{1}{2} \boldsymbol{\tau} \cdot \boldsymbol{a}_{\mu}, \qquad s = s_0 + \boldsymbol{\tau} \cdot \boldsymbol{s}, \qquad p = p_0 + \boldsymbol{\tau} \cdot \boldsymbol{p}$$

• Switch on external sources s, p, r_{μ}, l_{μ} and consider *local* chiral rotations:

 $\begin{array}{rccc} r_{\mu} & \rightarrow & r'_{\mu} = R \, r_{\mu} R^{\dagger} + i R \, \partial_{\mu} R^{\dagger} \,, & l_{\mu} & \rightarrow & l'_{\mu} = L \, l_{\mu} L^{\dagger} + i L \, \partial_{\mu} L^{\dagger} \,, \\ s + i \, p & \rightarrow & s' + i \, p' = R(s + i \, p) L^{\dagger} \,, & s - i \, p & \rightarrow & s' - i \, p' = L(s - i \, p) R^{\dagger} \end{array}$

The sources can be conveniently rewritten via $v_{\mu} = \frac{1}{2} (r_{\mu} + l_{\mu})$, $a_{\mu} = \frac{1}{2} (r_{\mu} - l_{\mu})$ with:

$$v_{\mu} = v_{\mu}^{(s)} + \frac{1}{2} \boldsymbol{\tau} \cdot \boldsymbol{v}_{\mu}, \qquad a_{\mu} = \frac{1}{2} \boldsymbol{\tau} \cdot \boldsymbol{a}_{\mu}, \qquad s = s_0 + \boldsymbol{\tau} \cdot \boldsymbol{s}, \qquad p = p_0 + \boldsymbol{\tau} \cdot \boldsymbol{p}$$

$$\begin{split} \tilde{H}[a,v,s,p] \rightarrow U^{\dagger}[a,v]\tilde{H}[a,v,s,p] U_{d}[\mathcal{Q}_{d}v] = U^{\dagger}\mathcal{H}[\mathcal{Q}_{d}v] = U^{\dagger}\mathcal{H}[a,v,s,p] U_{d}[\mathcal{Q}_{d}v] = U^{\dagger}\mathcal{H}[a,v] \\ \tilde{H}[a,v,s,p] \rightarrow U^{\dagger}[a,v,s,p] = U^{\dagger}\mathcal{H}[a,v,s,p] U \text{ and extract the nuclear} \\ \tilde{H}[a,v,s,p] \rightarrow U^{\dagger}[a,v]\tilde{H}[a,v,s,p] U[a_{a}v] = U^{\dagger}\mathcal{H}[a,v] U[a,v] \\ \tilde{H}[a,v,s,p] \rightarrow U^{\dagger}[a,v]\tilde{H}[a,v,s,p] U[a_{a}v] = U^{\dagger}\mathcal{H}[a,v] U^{\dagger}[a,v] U[a,v] \\ \tilde{H}[a,v] = U^{\dagger}\mathcal{H}[a,v] = U^{\dagger}\mathcal{H}[a,v] = U^{\dagger}\mathcal{H}[a,v] U^{\dagger}[a,v] = U^{\dagger}\mathcal{H}[a,v] U[a,v] \\ \tilde{H}[a,v] = U^{\dagger}\mathcal{H}[a,v] = U^{\dagger}\mathcal{H}[a,v] U^{\dagger}[a,v] U[a,v] \\ \tilde{H}[a,v] = U^{\dagger}\mathcal{H}[a,v] U^{\dagger}[a,v] U[a,v] U[a,v] \\ \tilde{H}[a,v] = U^{\dagger}\mathcal{H}[a,v] U^{\dagger}[a,v] U[a,v] U[a,v] \\ \tilde{H}[a,v] = U^{\dagger}\mathcal{H}[a,v] U^{\dagger}[a,v] U[a,v] U[a,v] \\ \tilde{H}[a,v] U^{\dagger}[a,v] U[a,v] U[a,v] U[a,v] \\ \tilde{H}[a,v] U^{\dagger}[a,v] U[a,v] U[a,v] U[a,v] \\ \tilde{H}[a,v] U^{\dagger}[a,v] U^{\dagger}[a,v] U[a,v] U[a,v] U[a,v] \\ \tilde{H}[a,v] U^{\dagger}[a,v] U[a,v] U$$

However, the resulting currents turn out to be non-renormalizable...

 \rightarrow Need to consider a more general class of UTs

Specifically, employ addition $\tilde{\mu}_{[a,n]}$, $\tilde{\mu}_{[a,n]}$,

$$i\frac{\partial}{\partial t}\Psi = H\Psi \quad \longrightarrow \quad i\frac{\partial}{\partial t} \left(U^{\dagger}(t)\Psi \right) = \begin{bmatrix} U^{\dagger}(t)HU(t) - U^{\dagger}(t) \\ U^{\dagger}(t)HU(t) - U^{\dagger}(t) \\ =: H_{\text{eff}} \begin{bmatrix} a, \dot{a}, v, \dot{v} \\ i \\ \partial t \end{bmatrix} \left(U^{\dagger}(t)\Psi \right)$$

$$\lambda \rho^{-}$$

Thus, we have:

 $H_{\text{eff}}[a, \dot{a}, v, \dot{v}, s, \dot{s}, p, \dot{p}] = U^{\dagger}[a, v, s, p]U_{\text{str}}^{\dagger}H[a, v, s, p]U_{\text{str}}U[a, v, s, p] + \left(i\frac{\partial}{\partial t}U^{\dagger}[a, v, s, p]\right)U[a, v, s, p]$

(to the order we are working [leading 1-loop for 2-body operators], can write 33 such UTs...)

Nuclear potentials are given by

$$V := H_{\text{eff}}[v = \dot{v} = a = \dot{a} = p = \dot{p} = \dot{s} = 0, \ s = m_q] - H_0,$$

while the current operators in momentum space are defined as (in the Schrödinger picture):

$$V^{j}_{\mu}(\vec{k},k_{0}) := \frac{\delta H_{\text{eff}}}{\delta v^{\mu}_{j}(\vec{k},k_{0})}, \qquad A^{j}_{\mu}(\vec{k},k_{0}) := \frac{\delta H_{\text{eff}}}{\delta a^{\mu}_{j}(\vec{k},k_{0})}, \qquad P^{j}(\vec{k},k_{0}) := \frac{\delta H_{\text{eff}}}{\delta p^{j}(\vec{k},k_{0})},$$

where the FT of the sources are given by $f(x) =: \int d^4q \, e^{-iq \cdot x} f(q)$ with $f = \{v^j_\mu, a^j_\mu, p^j\}$, H_{eff} is taken at t = 0 & the functional derivatives are taken at $v = \dot{v} = a = \dot{a} = p = \dot{p} = \dot{s} = s = 0$ & $s_0 = m_q$.

• It is straightforward to verify the proper relation to the S-matrix, e.g.:

$$\frac{\delta}{\delta a^{j\mu}(k_0,\vec{k})} \langle \alpha | S | \beta \rangle = -i \, 2\pi \delta (E_\alpha - E_\beta - k_0) \langle \alpha | A^j_\mu(k_0,\vec{k}) | \beta \rangle$$

• Manifestations of the symmetry (continuity equation)

Start with the Schrödinger equation

$$i\frac{\partial}{\partial t}\Psi = H_{\rm eff}[a,\dot{a},v,\dot{v},s,\dot{s},p,\dot{p}]\Psi$$

and perform a chiral rotation $a, \dot{a}, v, \dot{v}, s, \dot{s}, p, \dot{p} \rightarrow a', \dot{a}', v', \dot{v}', s', \dot{s}', p', \dot{p}'$. For observables to remain unaffected, there must exist a UT on the Fock space such that:

$$i\frac{\partial}{\partial t}U^{\dagger}\Psi = H_{\rm eff}[a', \dot{a}', v', \dot{v}', s', \dot{s}', p', \dot{p}']U^{\dagger}\Psi$$

That is, the Hamiltonians must be unitary equivalent:

$$H_{\rm eff}[a',\dot{a}',v',\dot{v}',s',\dot{s}',p',\dot{p}'] = U^{\dagger}H_{\rm eff}[a,\dot{a},v,\dot{v},s,\dot{s},p,\dot{p}]U + \left(i\frac{\partial}{\partial t}U^{\dagger}\right)U$$

Matching both sides of this equation for infinitesimal transformations, one obtains the continuity equation for the axial current:

$$[H_{\rm str}, \boldsymbol{A}_0(\vec{k}, 0) - \frac{\partial}{\partial k_0} \vec{k} \cdot \vec{\boldsymbol{A}}(\vec{k}, k_0) + \frac{\partial}{\partial k_0} [H_{\rm str}, \boldsymbol{A}_0(\vec{k}, k_0)] + m_q \, i \frac{\partial}{\partial k_0} \boldsymbol{P}(\vec{k}, k_0)] = \vec{k} \cdot \vec{\boldsymbol{A}}(\vec{k}, 0) - m_q \, i \, \boldsymbol{P}(\vec{k}, 0)$$

The axial currents are linearly dependent on the energy transfer k_0 (at the considered order). This emerges from time derivatives of the UT and is unavoidable if the currents are required to be renormalized.

• Manifestations of the Poincaré invariance

boost direction boost angle

$$\exp\left(-i \vec{e} \cdot \vec{K} \theta\right) \mathbf{A}_{\mu}^{H}(x) \exp\left(i \vec{e} \cdot \vec{K} \theta\right) = \Lambda_{\mu}^{\nu}(\theta) \mathbf{A}_{\nu}^{H}\left(\Lambda^{-1}(\theta)x\right)$$
boost operator $\mathbf{A}_{\nu}^{\mu}(x) \exp\left(i \vec{e} \cdot \vec{K} \theta\right) = \mathbf{A}_{\mu}^{\nu}(\theta) \mathbf{A}_{\nu}^{H}\left(\Lambda^{-1}(\theta)x\right)$

This leads to the (on-shell) relation to be fulfilled by the current in momentum space

$$\begin{split} \delta(E_{\alpha} - E_{\beta} - k_0) \left\langle \alpha | \left(\left[-i \, \vec{e} \cdot \vec{K}, \mathbf{A}_{\mu}(\vec{k}) \right] + \mathbf{A}_{\mu}^{\perp}(\vec{k}) - \vec{e} \cdot \vec{\nabla}_k [H_{\text{str}}, \mathbf{A}_{\mu}(\vec{k})] - \vec{e} \cdot \vec{k} \frac{\partial}{\partial k_0} \mathbf{A}_{\mu}(\vec{k}) \right) | \beta \rangle &= 0 \\ \text{where} \quad \mathbf{A}^{\perp} := (\vec{e} \cdot \vec{\mathbf{A}}, \ \vec{e} \mathbf{A}_0). \end{split}$$

• Manifestations of the Poincaré invariance

boost direction boost angle

$$\exp\left(-i \vec{e} \cdot \vec{K} \theta\right) \mathbf{A}_{\mu}^{H}(x) \exp\left(i \vec{e} \cdot \vec{K} \theta\right) = \Lambda_{\mu}^{\nu}(\theta) \mathbf{A}_{\nu}^{H}\left(\Lambda^{-1}(\theta)x\right)$$
boost operator current operator in the Heisenberg picture

This leads to the (on-shell) relation to be fulfilled by the current in momentum space

$$\begin{split} \delta(E_{\alpha} - E_{\beta} - k_0) \left\langle \alpha | \left(\left[-i \, \vec{e} \cdot \vec{K}, \mathbf{A}_{\mu}(\vec{k}) \right] + \mathbf{A}_{\mu}^{\perp}(\vec{k}) - \vec{e} \cdot \vec{\nabla}_k [H_{\text{str}}, \mathbf{A}_{\mu}(\vec{k})] - \vec{e} \cdot \vec{k} \frac{\partial}{\partial k_0} \mathbf{A}_{\mu}(\vec{k}) \right) | \beta \right\rangle \ = \ 0 \\ \text{where} \quad \mathbf{A}^{\perp} := (\vec{e} \cdot \vec{\mathbf{A}}, \ \vec{e} \mathbf{A}_0). \end{split}$$

 Unitary ambiguity [33 UT's] is strongly reduced but not completely eliminated by the renormalizability requirement for the currents.

We further require that \forall pion-pole contributions to the axial currents match the corresponding 1π -exchange contributions to the nuclear forces at the pion pole:

$$\lim_{q_i^2 \to -M_{\pi}^2} (q_i^2 + M_{\pi}^2) \left[H_{\text{str}} - \vec{A} (-\vec{q}_i) \cdot \left(-\frac{g_A}{2F_{\pi}^2} \vec{\sigma}_i \boldsymbol{\tau}_i \right) \right] = 0$$

With these constraints, the expressions for the currents are determined unambiguously.

Summary of the main results of our calculations [Krebs, EE, Meißner, Annals Phys. 378 (2017) 317]

- worked out completely the axial charge and current operators to Q⁴ (N³LO) relative to the leading 1-body term, i.e.:
 - at the 2-loop level for 1-body operators,
 - at the 1-loop level for 2-body operators,
 - at tree level for 3-body operators

(...about 250 diagrams...)

- worked out completely the corresponding pseudoscalar currents to the same chiral order
- explicitly verified the validity of the continuity equation for all contributions
- worked out the boost operator (to the required order) and verified the constraints from the Poincaré invariance

Electromagnetic currents

Chiral expansion of the electromagnetic current and charge operators

Electromagnetic currents

Chiral expansion of the electromagnetic current and charge operators

The low-energy constants

LECs entering the 1π current: $\bar{l}_6, \bar{d}_8, \bar{d}_9, \bar{d}_{18}, \bar{d}_{21}, \bar{d}_{22}$

 \overline{l}_6 - known from the π sector

 $ar{d}_{18}$ - known from GTD

 $ar{d}_{22}$ - from the axial radius: $ar{d}_{22}=2.2\pm0.2~{
m GeV^{-2}}$

 $\overline{d}_9, \ \overline{d}_{21}, \ \overline{d}_{22}$ - contribute to charged pion photoproduction (radiative capture)

Fearing et al.'00 Till Wolf, master thesis, Bochum, 2013

LEC [GeV ⁻²]	Fearing <i>et al.</i>	Wolf	
\bar{d}_9	2.5 ± 0.8	2.2 ± 0.9	
\bar{d}_{20}	-1.5 ± 0.5	-3.2 ± 0.5	
$2\bar{d}_{21} - \bar{d}_{22}$	5.7 ± 0.8	6.8 ± 1.0	

Some d_i's have been determined by Gasparyan, Lutz '10 (ChPT + disp. relations)

Electromagnetic exchange currents

Skibinski, Golak, Topolnicki, Witala, EE, Krebs, Kamada, Meißner, Nogga, PRC 93 (2016) 064002

- To maintain consistency between currents and forces (symmetry), we generate regularized longitudinal terms in the current via the continuity equation (i.e. Siegert approach).
- Transverse terms in the currents are to be regularized and included explicitly (in progress...)

Electromagnetic exchange currents

Skibinski, Golak, Topolnicki, Witala, EE, Krebs, Kamada, Meißner, Nogga, PRC 93 (2016) 064002

Nucleon-deuteron radiative capture: $p(n) + d \rightarrow {}^{3}H({}^{3}He) + \gamma$

Tritium β-decay [Skibinski et al., in progress]

Half-life of ³H (up to known radiative corrections):

 —> constraints on the Gamow-Teller ME

):
$$ft=rac{K}{G_V^2\langle F
angle^2+g_A^2\langle GT
angle^2}=1129.6\pm 3.0~{
m s}$$

Tritium β-decay [Skibinski et al., in progress]

 \rightarrow test axial exchange currents

• Half-life of ³H (up to known radiative corrections): $ft = \frac{K}{G_V^2 \langle F \rangle^2 + g_A^2 \langle GT \rangle^2} = 1129.6 \pm 3.0 \text{ s}$

leading short-range axial current (Q⁰)

leading 3N force (N²LO)

Tritium β-decay [Skibinski et al., in progress]

- Half-life of ³H (up to known radiative corrections): constraints on the Gamow-Teller ME
- Up to Q¹ (i.e. N³LO), no LECs except for known c_i and c_p involved. Fixing c_p in the strong sector allows one to predict ft! (it is crucial to maintain the symmetry)

→ test axial exchange currents

 Within the LENPIC, work is in progress on the determination of **c**_D.

RUB

universitätbonn

JÜLICH Kyutech

leading short-range

axial current (Q⁰)

 $ft = rac{K}{G_V^2 \langle F
angle^2 + g_A^2 \langle GT
angle^2} = 1129.6 \pm 3.0 ~{
m s}$

leading 3N force (N²LO)

National Laboratory

INIVERSITÄT

DARMSTADI

-5

Tritium \beta-decay [Skibinski et al., in progress]

- Half-life of ³H (up to known radiative corrections): constraints on the Gamow-Teller ME
- Using 1N current, the *ft* value is off by ~ 5% ← exchange current contribution! Up to Q¹ (i.e. N³LO), no LECs except for known c_i and c_p involved. Fixing c_p in the strong sector allows one to predict *ft*! (it is crucial to maintain the symmetry)

→ test axial exchange currents

- Within the LENPIC, work is in progress on the determination of **c**_D.
- Being validated in ³H β -decay, the theory can be used to predict the μ capture rate on ²H (being measured in MuSun@PSI) & to study few-N weak reactions (µ capture, pp fusion, v scattering, ...)

RUB

universitätbonn

INIVERSITÄT

DARMSTADT

JÜLICH

-5

LENPIC: Low Energy Nuclear Physics International Collaboration

leading 3N force (N²LO)

National Laboratory

leading short-range axial current (Q⁰)

Summary and outlook

Nuclear Hamiltonian:

- derivation of contributions up to N³LO completed already in 2011; derivation of N⁴LO corrections done for V_{2N} and almost done for V_{3N} (new LECs...) and V_{4N}
- accurate & precise NN potentials at N⁴LO are available, implementation of many-body forces beyond N²LO in progress [LENPIC]

Electroweak current operators:

- have been worked out completely to N³LO
- 1N contributions expressible in terms of form factors
- some πN LECs in 1π axial charge at N³LO are unknown... [lattice QCD? v-induced π -production? resonance saturation? large-N_c?...]
- 2N short-range e.m. current/axial charge involve a few new LECs

Next steps (in progress):

- Precision tests of the theory for ³H β decay & μ capture (validation)
- Extension to other processes, heavier nuclei, N⁴LO, explicit Δ 's, ...

spares...

Nuclear chiral EFT

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived in ChPT}}\right] |\Psi\rangle = E|\Psi\rangle$$

LS equation is linearly divergent already at LO

Nuclear chiral EFT

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived in ChPT}}\right]|\Psi\rangle = E|\Psi\rangle$$

LS equation is linearly divergent already at LO

Commonly used approach [EGM, EM, EKM, Gezerlis et al.'14, Piarulli et al.'15, Carlsson et al.'16, ...]:

- Introduce a finite UV regulator $\Lambda \sim \Lambda_b (\Lambda_b \sim 600 \text{ MeV})$
- Include short-range operators in V_{NN} according to NDA ← ^{minimal possible set;} alternatives have been proposed...
- Solve the LS equation & tune the **bare** LECs $C_i(\Lambda)$ to data (implicit renormalization)
- (Numerical) self-consistency checks via error analysis and Λ-variation
 See: Lepage, "How to renormalize the Schrödinger equation", nucl-th/9607029 and talk@INT in 2000

Nuclear chiral EFT

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived in ChPT}}\right]|\Psi\rangle = E|\Psi\rangle$$

LS equation is linearly divergent already at LO

Commonly used approach [EGM, EM, EKM, Gezerlis et al.'14, Piarulli et al.'15, Carlsson et al.'16, ...]:

- Introduce a finite UV regulator $\Lambda \sim \Lambda_b (\Lambda_b \sim 600 \text{ MeV})$
- Include short-range operators in V_{NN} according to NDA ← ^{minimal possible set;} alternatives have been proposed...
- Solve the LS equation & tune the **bare** LECs $C_i(\Lambda)$ to data (implicit renormalization)
- (Numerical) self-consistency checks via error analysis and Λ-variation
 See: Lepage, "How to renormalize the Schrödinger equation", nucl-th/9607029 and talk@INT in 2000

(Some) alternatives:

- \bullet renormalizable approach based on the Lorentz invariant \mathcal{L}_{eff} [EE, Gegelia '12 '16]
- RG-based approach to determine the counting for contacts [Birse]
- non-perturbative "renormalization" within the non relativistic framework using $\Lambda >> \Lambda_b$ [van Kolck, Pavon Valderrama, Long, ...]

Nuclear chiral EFT

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived in ChPT}}\right]|\Psi\rangle = E|\Psi\rangle$$

LS equation is linearly divergent already at LO

Commonly used approach [EGM, EM, EKM, Gezerlis et al.'14, Piarulli et al.'15, Carlsson et al.'16, ...]:

- Introduce a finite UV regulator $\Lambda \sim \Lambda_b (\Lambda_b \sim 600 \text{ MeV})$
- Include short-range operators in V_{NN} according to NDA ← ^{minimal possible set;} alternatives have been proposed...
- Solve the LS equation & tune the **bare** LECs $C_i(\Lambda)$ to data (implicit renormalization)
- (Numerical) self-consistency checks via error analysis and Λ-variation
 See: Lepage, "How to renormalize the Schrödinger equation", nucl-th/9607029 and talk@INT in 2000

(Some) alternatives:

- renormalizable approach based on the Lorentz invariant \mathcal{L}_{eff} [EE, Gegelia '12 '16]
- RG-based approach to determine the counting for contacts [Birse]
- non-perturbative "renormalization" within the non relativistic framework using A >> Ab [van Kolck, Pavon Valderrama, Long, ...] is more in spirit of peratization [EE, Gegelia EPJA 41 (09) 341]

Nuclear chiral EFT

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived in ChPT}}\right]|\Psi\rangle = E|\Psi\rangle$$

LS equation is linearly divergent already at LO

Commonly used approach [EGM, EM, EKM, Gezerlis et al.'14, Piarulli et al.'15, Carlsson et al.'16, ...]:

- Introduce a finite UV regulator $\Lambda \sim \Lambda_b (\Lambda_b \sim 600 \text{ MeV})$
- Include short-range operators in V_{NN} according to NDA ← ^{minimal possible set;} alternatives have been proposed...
- Solve the LS equation & tune the **bare** LECs $C_i(\Lambda)$ to data (implicit renormalization)
- (Numerical) self-consistency checks via error analysis and Λ-variation
 See: Lepage, "How to renormalize the Schrödinger equation", nucl-th/9607029 and talk@INT in 2000

(Some) alternatives:

- renormalizable approach based on the Lorentz invariant \mathcal{L}_{eff} [EE, Gegelia '12 '16]
- RG-based approach to determine the counting for contacts [Birse]
- non-perturbative "renormalization" within the non relativistic framework using A >> Ab [van Kolck, Pavon Valderrama, Long, ...] is more in spirit of peratization [EE, Gegelia EPJA 41 (09) 341]

See also: *Nuclear Effective Field Theories — the crux of the matter*, open discussion by Mike Birse and EE at the KITP program "Frontiers in Nuclear Physics", August 22 - November 4, 2016, available at <u>http://online.kitp.ucsb.edu/online/nuclear16/</u>

Comparison with Baroni et al.

For ³H β -decay ($\vec{k} \simeq 0$), the N³LO contribution to the 2N current by Baroni et al. is:

$$\begin{split} \vec{A}_{\text{Baroni et al.}}^{a} &= \frac{g_{A}^{3}}{32\pi F_{\pi}^{4}} \tau_{2}^{a} \left[W_{1}(q_{1})\vec{\sigma}_{1} + W_{2}(q_{1})\vec{q}_{1}\vec{\sigma}_{1} \cdot \vec{q}_{1} + Z_{1}(q_{1}) \left(2\frac{\vec{q}_{1}\vec{\sigma}_{2} \cdot \vec{q}_{1}}{q_{1}^{2} + M_{\pi}^{2}} - \vec{\sigma}_{2} \right) \right] \\ &+ \frac{g_{A}^{5}}{32\pi F_{\pi}^{4}} \tau_{1}^{a} W_{3}(q_{1}) (\vec{\sigma}_{2} \times \vec{q}_{1}) \times \vec{q}_{1} - \frac{g_{A}^{3}}{32\pi F_{\pi}^{4}} [\boldsymbol{\tau}_{1} \times \boldsymbol{\tau}_{2}]^{a} Z_{3}(q_{1}) \frac{\vec{\sigma}_{1} \times \vec{q}_{1}\vec{\sigma}_{2} \cdot \vec{q}_{1}}{q_{1}^{2} + M_{\pi}^{2}} + 1 \leftrightarrow 2 \,, \end{split}$$

Baroni et al., PRC93 (2016) 015501; PRC94 (2016) 024003

where the various loop functions are defined as:

Comparison with Baroni et al.

For ³H β -decay ($\vec{k} \simeq 0$), the N³LO contribution to the 2N current by Baroni et al. is:

$$\begin{split} \vec{A}_{\text{Baroni et al.}}^{a} &= \frac{g_{A}^{3}}{32\pi F_{\pi}^{4}} \tau_{2}^{a} \left[W_{1}(q_{1})\vec{\sigma}_{1} + W_{2}(q_{1})\vec{q}_{1}\vec{\sigma}_{1} \cdot \vec{q}_{1} + Z_{1}(q_{1}) \left(2\frac{\vec{q}_{1}\vec{\sigma}_{2} \cdot \vec{q}_{1}}{q_{1}^{2} + M_{\pi}^{2}} - \vec{\sigma}_{2} \right) \right] \\ &+ \frac{g_{A}^{5}}{32\pi F_{\pi}^{4}} \tau_{1}^{a} W_{3}(q_{1}) (\vec{\sigma}_{2} \times \vec{q}_{1}) \times \vec{q}_{1} - \frac{g_{A}^{3}}{32\pi F_{\pi}^{4}} [\boldsymbol{\tau}_{1} \times \boldsymbol{\tau}_{2}]^{a} Z_{3}(q_{1}) \frac{\vec{\sigma}_{1} \times \vec{q}_{1}\vec{\sigma}_{2} \cdot \vec{q}_{1}}{q_{1}^{2} + M_{\pi}^{2}} + 1 \leftrightarrow 2 \,, \end{split}$$

Baroni et al., PRC93 (2016) 015501; PRC94 (2016) 024003

where the various loop functions are defined as:

$$\begin{split} W_{1}(q_{1}) &= \frac{1}{2}A(q_{1})\Big[4(1-2g_{A}^{2})M_{\pi}^{2} + (1-5g_{A}^{2})q_{1}^{2}\Big] + \frac{1}{2}M_{\pi}\left[g_{A}^{2}\left(\frac{4M_{\pi}^{2}}{4M_{\pi}^{2}+q_{1}^{2}}-9\right)+1\right],\\ W_{2}(q_{1}) &= \frac{M_{\pi}\left(4(2g_{A}^{2}+1)M_{\pi}^{2}+(3g_{A}^{2}+1)q_{1}^{2}\right)}{2q_{1}^{2}(4M_{\pi}^{2}+q_{1}^{2})} - \frac{A(q_{1})\left(4(2g_{A}^{2}+1)M_{\pi}^{2}+(g_{A}^{2}-1)q_{1}^{2}\right)}{2q_{1}^{2}},\\ W_{3}(q_{1}) &= -\frac{4A(q_{1})}{3} - \frac{1}{6M_{\pi}}, \qquad \qquad \text{does not exist in the chiral limit!}\\ Z_{1}(q_{1}) &= 2A(q_{1})(2M_{\pi}^{2}+q_{1}^{2}) + 2M_{\pi},\\ Z_{3}(q_{1}) &= \frac{1}{2}A(q_{1})(4M_{\pi}^{2}+q_{1}^{2}) + \frac{M_{\pi}}{2},\\ A(q_{1}) &= \frac{1}{2q_{1}}\arctan\left(\frac{q_{1}}{2M_{\pi}}\right). \end{split}$$

We find:

$$\vec{A}_{\text{Baroni et al.}}^{a} - \vec{A}_{\text{KEM}}^{a} = -\frac{g_{A}^{5}A(q_{1})\left(\vec{\sigma}_{2}\tau_{1}^{a}q_{1}^{4} + 2\vec{q}_{1}(6M_{\pi}^{2} + q_{1}^{2})\vec{q}_{1}\cdot\vec{\sigma}_{2}\tau_{1}^{a}\right)}{96\pi F_{\pi}^{4}q_{1}^{2}} + \text{rational function of } \vec{q}_{1} + 1 \leftrightarrow 2$$

$$\longrightarrow \text{ the currents have different long-range parts!}$$

Magnetic form factors of ³He, ³H

Piarulli, Girlanda, Marcucci, Pastore, Schiavilla, Viviani, Phys. Rev. C87 (2013) 014006

• ³He/³H m.m's used to fix EM LECs; ~15% correction from two-body currents

• Exchange currents crucial to improve agreement with exp data

Magnetic moments of light nuclei

Pastore, Pieper, Schiavilla, Wiringa, Phys. Rev. C87 (2013) 035503

- Hybrid GFMC calculations using AV18 + Urbana 3NF
- Magnetic moments of A = 2, 3 nuclei used to fix EM LECs
- Theoretical uncertainties?

NN phase shifts: cutoff dependence

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; PRL 115 (2015) 122301

N²LO

N³LO

Regulator (in)dependence

How do our results depend on the specific form of the regulator $f\left(\frac{r}{R}\right) = \left[1 - \exp\left(-\frac{r^2}{R^2}\right)\right]^n$

and/or additional spectral function regularization $V_C(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\Lambda_{\text{SFR}}} d\mu \, \mu \, \frac{\rho_C(\mu)}{\mu^2 + q^2}$

Selected phase shifts (in deg.) for different values of Λ_{SFR} and n at $N^3LO_{[R = 0.9 \text{ fm}]}$

Lab. energy	NPWA	our result	DR, $n = 5$	DR, $n = 7$	SFR, 1.0 GeV	SFR, 1.5 GeV	SFR, 2.0 GeV	
proton-proton ${}^{1}S_{0}$ phase shift								
$10 {\rm MeV}$	55.23	55.22 ± 0.08	55.22	55.22	55.22	55.22	55.22	
$100 {\rm ~MeV}$	24.99	24.98 ± 0.60	24.98	24.98	24.98	24.98	24.98	
$200~{\rm MeV}$	6.55	6.56 ± 2.2	6.55	6.56	6.56	6.56	6.57	
neutron-proton ${}^{3}S_{1}$ phase shift								
$10 {\rm MeV}$	102.61	102.61 ± 0.07	102.61	102.61	102.61	102.61	102.61	
$100 {\rm ~MeV}$	43.23	43.22 ± 0.30	43.28	43.20	43.17	43.21	43.22	
$200~{\rm MeV}$	21.22	21.2 ± 1.4	21.2	21.2	21.2	21.2	21.2	
proton-proton ${}^{3}P_{0}$ phase shift								
$10 {\rm ~MeV}$	3.73	3.75 ± 0.04	3.75	3.75	3.75	3.75	3.75	
$100 {\rm ~MeV}$	9.45	9.17 ± 0.30	9.15	9.18	9.18	9.17	9.17	
$200~{\rm MeV}$	-0.37	-0.1 ± 2.3	-0.1	-0.1	-0.1	-0.1	-0.1	
proton-proton ${}^{3}P_{1}$ phase shift								
$10 {\rm MeV}$	-2.06	-2.04 ± 0.01	-2.04	-2.04	-2.04	-2.04	-2.04	
$100 {\rm ~MeV}$	-13.26	-13.42 ± 0.17	-13.43	-13.41	-13.41	-13.42	-13.42	
$200~{\rm MeV}$	-21.25	-21.2 ± 1.6	-21.2	-21.2	-21.2	-21.2	-21.2	
proton-proton ${}^{3}P_{2}$ phase shift								
$10 {\rm ~MeV}$	0.65	0.65 ± 0.01	0.66	0.65	0.65	0.65	0.65	
$100 {\rm ~MeV}$	11.01	11.03 ± 0.50	10.97	11.06	11.07	11.05	11.04	
$200~{\rm MeV}$	15.63	15.6 ± 1.9	15.6	15.5	15.5	15.5	15.6	

-> negligible regulator dependence (compared to the estimated theor. accuracy)