

CLAS12 at Jefferson Lab

Daria Sokhan

University of Glasgow, UK

IPPP/NuSTEC Topical Meeting on Neutrino-Nucleus Scattering IPPP, Durham, UK — 19 April 2017

Jefferson Lab

2

Jefferson Lab

CEBAF: Continuous Electron Beam Accelerator Facility.

- * Energy up to 11 GeV (Halls A, B, C), 12 GeV Hall D
- ***** Energy spread $\delta E/E_e \sim 10^{-4}$
- Electron polarisation up to ~80%, measured to 3%
- Beam size at target < 0.4 mm</p>

JLab @ 12 GeV

High resolution($\delta p/p = 10^{-4}$) spectrometers, very high luminosity, large installation experiments.

9 GeV tagged polarised photons, full acceptance

Hall B: CLAS12

Hall C

Two movable high momentum spectrometers, welldefined acceptance, very high luminosity.

Very large acceptance, high luminosity.

CLAS12 physics

- * 3D and spin structure of the nucleon and nuclei: deep exclusive and semiinclusive reactions, meson electro-production for study of Generalised Parton Distributions (GPDs), Transverse Momentum-dependent Distributions (TMDs).
- * Neutron magnetic moment.
- Neutron F_{2n}: d/u ratio.

- Full range of Q², from quasi-real photons to ~ 9 GeV², for hadron spectroscopy: N* electroexcitation, search for hybrid mesons, role of glue and generation of mass.
- * Medium modifications: in-medium structure functions, colour transparency.

Targets

Unpolarised:

- * Liquid H₂ ~ 2017/18
- ***** Liquid D₂ ~ 2019
- * Gas D₂ (E12-06-113)

* Nuclear targets ~ 2021 (E12-06-117)

- Transversely polarised
 frozen spin HD
- He Dilution Refrigeration:
 ~200 mK needed for P > 80 %.
- Target system being modified for electron beam.

* Polarised ⁷LiH and ⁷LiD (E12-14-001) ~ 2022

- Longitudinally polarised frozen NH₃ and ND₃ ~ 2019/20
 - Dynamic Nuclear Polarisation (DNP) of target material, cooled to 1K in a He evaporation cryostat.
 - $P_{\text{proton}} > 80\%$, P_{deuteron} up to 50%.

~ 2021/22

CLAS12

Design luminosity $L \sim 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

Acceptance for charged particles:

- Central (CD), $35^{\circ} < \theta < 125^{\circ}$
- Forward (FD), $5^{o} < \theta < 35^{o}$

Acceptance for photons and electrons:

- **FT**, 2.5° < θ < 5°
- EC, 5° < θ < 35°

High luminosity & large acceptance: Concurrent measurement of exclusive, semi-inclusive, and inclusive processes

Central Detector

 Angular coverage: ~ 35 - 125 degrees polar, full azimuthal.
 A set of barrel detectors positioned around the target within the 5 T axial field of a superconducting solenoid magnet (Møller electron shield, field for tracking, field for polarised target):

- Vertex trackers (SVT and MVT)
- Time of flight system (CTOF)
- Neutron detector (CND)

Silicon Vertex Tracker (SVT)

Will measure momentum and determine vertex of charged particles.

Four radial regions, azimuthally segmented, two Si layers in each region.

Angular coverage θ	35°–125°
Angular coverage Φ	~2π
Spatial resolution	50-65 μm
Momentum resolution	~6%
θ resolution	10–20 mrad
φ resolution	~5 mrad

MicroMega Vertex Tracker (MVT)

- Improved track reconstruction in vicinity of target.
- Barrel tracker (18 cylindrical detectors in 6 layers, Ar + 10% C₄H₁₀ gas), covers 35 - 125 deg, enhances polar angle resolution.
- Forward tracker (6 disk detectors, Ne + 10% C₂H₆+10% CF₄ gas), covers 6 - 29 deg, improved vertex resolution by factor 3 - 10 compared to drift chambers.

Central Time-of-Flight (CTOF)

- Provides timing information for charged particle ID.
- Barrel of plastic scintillator paddles, double-sided PMT read-out via long focussing light-guides, 35 - 125 deg coverage, full azimuthal.

Design resolution: 65 ps.

PID:	
π/K Separation	3.3 σ separation up to 0.64 GeV
K/p Separation	3.3 σ separation up to 1.00 GeV
π/p Separation	3.3σ separation up to $1.25~\text{GeV}$

Central Neutron Detector (CND)

- Identification of neutrons (0.2 1 GeV/c) on the basis of timing.
- * Three-layer barrel of plastic scintillators (40 -120 deg), segmented azimuthally, PMT readout upstream through long light-guides, pairs coupled via u-turn light-guides downstream.
- Neutron detection efficiency ~ 10%.
- ***** Momentum resolution ~ 4 12%.

Forward Detector

Angular coverage: ~ 2.5 / 5 - 35 degrees polar.
A set of detectors segmented into six sectors to fit within the regions of a superconducting toroidal magnet (peak field 3.58 T):

- Cherenkov Counters (HTCC, LTCC, RICH)
- Drift Chambers (DC)
- Time of flight system (FTOF)
- Calorimeters (PCAL/EC)
- Forward Tagger (FT)

High Threshold Cherenkov Counter (HTCC)

- Will provide fast trigger on scattered electrons, pion / electron discrimination.
- Multifocal mirror: 60 ellipsoidal composite mirrors, 8 PMTs in each sector.

PARAMETER	DESIGN VALUE
Working Gas	CO ₂ @1atm, 25°C
Angular Coverage	ϑ= 5° – 35°; φ= 0° – 360°
Threshold	15 MeV/c (electrons)
Threshold	4.9 GeV/c (charged pions)
Rejection of pions at 2 GeV/c	~10 ³ (99.9% electron detection efficiency)
Rejection of pions at 4 GeV/c	~0.5x10 ³ (99.9% electron detection efficiency)

Drift Chambers

Momentum of charged particles.
Three regions (~2, ~3, ~4m from target), each with 6 sectors and 2 super-layers, hexagonal cells, 90%-10% argon-CO₂.
Spacial resolution of each cell:

250 - 350 microns.

DC – Tracking Specifications		
PARAMETER	SPECIFICATION	
Angular coverage	5° – 40° (50% φ-coverage at 5°)	
Momentum resolution	dp/p < 1%	
θ Resolution	1 mrad	
φ Resolution	1 mrad/sinθ	
Luminosity	10 ³⁵ cm ⁻² s ⁻¹	

Low Threshold Cherenkov Counter (LTCC)

***** Kaon / pion discrimination: 3.5 - 9 GeV/c.

Six sectors of lightweight mirrors, light collecting Winston cones, PMTs, magnetic shields. Uses C₄F₁₀ gas.

Ring Imaging Cherenkov Counter (RICH)

Will replace one sector of the LTCC, improve particle ID in 3 - 8 GeV/c momentum range.

* Aerogel, multi-anode PMTs, mirrors.

DESIGN VALUE
3-8 GeV/c
Not less than 500
Not less than 100
5° to 25°

Forward Time-of-Flight

Timing information and particle ID.
 Six sectors of plastic scintillator paddles, PMT read-out at both ends of each paddle.

***** Coverage and resolution:

 $\theta: 5^{\circ} - 35^{\circ}, \phi: 50\% \ at \ 5^{\circ}, 85\% \ at \ 35^{\circ}$ Design resolution: 60 to 160 ps.

$$\theta: 35^{\circ} - 45^{\circ}, \phi: 85\% \ at \ 35^{\circ}, 90\% \ at \ 45^{\circ}$$

Design resolution: 140 to 165 ps.

PID:	
π/K Separation	4σ separation up to 2.8 GeV
K/p Separation	4σ separation up to 4.8 GeV
π/p Separation	4σ separation up to 5.4 GeV

Pre-shower and electromagnetic calorimeters (PCAL/EC)

- Identification of electrons, photons, neutral pions and neutrons.
- Sampling calorimeters, six modules ~7m from the target, 54 layer scintillator strip / lead sandwich, 3 orientations, light via fibres to PMTs.
- Total thickness: ~ 20.5 radiation lengths.
- * $\theta: 5^{\circ} 35^{\circ}, \phi: 50\% \ at \ 5^{\circ}, 85\% \ at \ 35^{\circ}$
- Light-yield: 11-12 photoelectrons (p.e.) / MeV (PCAL), 3-4 p.e. / MeV (EC).

EXPECTED PERFORMANCE	VALUE
Energy resolution	10%/VE
Position resolution	0.5 cm
Time resolution	500 ps

Forward Tagger

- Extends electron / photon detection down to 2.5 degrees.
- PbWO electromagnetic calorimeter read out with APDs, provides trigger.
- Micromegas tracker, 2 double-layers
 - (~150 micron resolution).
- Hodoscope (2 layers of scintillator tiles, SiPM readout), separates electron and photons.

Funded by STFC with recent project (PPRP) grant (Edinburgh / Glasgow)

Expected Performance	VALUE
Azimuthal angular coverage	2.5° to 4.5°
EM shower energy range	E _{max} -E _{min} = (0.5 - 8.0) GeV
Energy resolution	σ _E /E ≤ 2%/√E(GeV) ⊕ 1%
Angular resolution	$\sigma_{\vartheta}/\vartheta \le 1.5$ %, $\sigma_{\varphi} \le 2^{\circ}$
Time resolution	≤300 ps

Forward Detector: March 2017

Additional detectors: RTPC

Radial Time Projection Chamber (BONuS): detection of low energy recoils to study almost-free neutrons. Proposal approved (E12-06-113).

ALERT: alternative detector to identify light ions up to ⁴He, possible use in trigger.

Proposal deferred at the last JLab PAC (RP12-16-011C).

Require removal of SVT and barrel MVT.

Proton momenta: 70 - 250 MeV/c.

Additional detectors: Large Angle Neutrons

* BAND: Backward Angle Neutron Detector (a scintillator half-ring).
 Lab scattering angle coverage: 160 - 170 deg.
 Neutron momenta: 250 - 600 MeV/c.
 Neutron efficiency ~ 30%.
 Proposal approved (E12-11-003A).

After JLab 12 GeV... the Electron-Ion Collider

- * Two sites considered: JLab and Brookhaven National Lab
- * Polarised *e* and light nuclei, unpolarised heavy nuclei
- ★ Centre of mass energy range: 20 140 GeV
- ***** High luminosity (10³³ 10³⁴ cm⁻²s⁻¹)
- High resolution detectors

- * Gluon contribution to nucleon spin
- * Tomography of the quark-gluon sea
- Saturation of gluon density
- * Colour charge propagation in the nuclear medium

Fast evolving physics case...

~ 2030s

Summary

***** CLAS12 will start taking data late this year.

* Current experimental programme for ~ 10 years of operation.

* Electron scattering experiments on nuclear targets: measurements relevant to neutrino-nucleus scattering can be made (eg: multiple proton knock-out, pion electroproduction...).

* A series of experiments with low-momentum recoil detection are in the planning.

