Lorenzo Zana

The SoLID Project

Solenoidal Large Intensi

The University of Edinburgh For the SoLID Collaboration IPPP/NuSTEC 18-20/04/2017

Outline

- Magnet
- Detectors
- Physics:
 - SIDIS,
 - PVDIS,
 - J/Psi
- ♦Summary
- Different projects of interest

Thomas Jefferson Laboratory

Thomas Jefferson Laboratory

SoLID in Hall-A

Overview of the SoLID project

- SoLID apparatus is designed to fully exploit the JLab 12 GeV upgrade
- Large acceptance detector to handle high luminosity($10^{37} 10^{39}$ cm⁻² s⁻¹)
- Reach ultimate precision for SIDIS (TMDs), providing three-dimensional imaging of nucleon in momentum space
- PVDIS in high-x region providing sensitivity to new physics at 10 20 TeV , and sensitive to QCD physics
- Threshold J/ ψ , probing strong color field in the nucleon, trace anomaly
- 5 highly rated experiments approved
 - Three SIDIS experiments, one PVDIS, one J/ ψ production
 - Run group experiments: di-hadron, Inclusive-SSA, and much more...
 - Strong collaboration (250+ collaborators from 70+ institutes, 13 countries)
- Significant international (Chinese, USA, Europe) contributions and strong theoretical support

Magnet

CLEO-II Solenoid Magnet: from Cornell Univ.

Goals:

 →Acceptance: Φ: 2π, θ: 8°-24° (SIDIS), 22°-35° (PVDIS), P: 1.0 – 7.0 GeV/c,
 → Resolution: δP/P ~ 2% (requires 0.1 mm tracking resolution)

 \rightarrow Fringe field at the front end < 5 Gaus

Status:

CLEO at Cornell

- → CLEO-II magnet formally represted and agreed in 2013: Built in 1989 and operated until 2008, uniform central field at 1.5 T, Inner radius 2.9 m, coil radius 3.1 m and coil length 3.5 m
- \rightarrow Site visit in 2014, disasembly in 2015

Cleo Magnet at Jlab (Dec 2016)

Coil collar in JLab test lab high bay

Cryostat leaving Cornell

SoLID Overview

• High Intensity $(10^{37} \sim 10^{39} \text{ cm}^{-2}\text{s}^{-1})$ and Large Acceptance

◆Take advantage of new developed detector techniques, fast electronics and data acquisition.

Sophesticated MC simulation and analysis software developments
 PVDIS: Baffle
 LGC
 4xGEMs
 EC

Physics Overview

- Semi-Inclusive Deep Inelastic Scattering (SIDIS):
 - → Transversely Polarized 3He, E12-10-006 (90 days, A),
 - → Longitudinally Polarized 3He, E12-11-007 (35 days, A),
 - → Transversely Polarized Proton, E12-11-108 (120 days, A),
 - → Two new bonus runs: Ay and Di-Hadron,
 - \rightarrow And can be more ...
- Parity Violation Deep Inelastic Scattering (PVDIS):
- → PVDIS with LH2 and LD2, E12-10-007 (169 days, A)
- → proposing new experiments, e.g. EMC with Calcium
- J/ψ :
- → Near Threshold Electroproduction of J/ ψ at 11 GeV, E12-12-006 (60

days, A-)

More ...

SiDIS

- Single Spin Asymmetry on Transverse ³He for 90 days (rating A)
- Single and Double Spin Asymmetry on ³He for 35 days (rating A)
- Single and Double Spin Asymmetries on Transverse ¹H for 120 days (rating A)
- Two run group experiments: di-hadron and Inclusive-SS using existing data from above experiments
- Key of SoLID-SIDIS program:
 - Large Acceptance + High Luminosity
 - 4-D mapping of asymmetries
 - o Tensor charge, TMDs ...
 - Lattice QCD and QCD Dynamics models.

13

14

- Collins Asymmetries in 6 of 1400 bins in x, Q^2 , P_T and z
- Collins Asymmetries~ Transversity x Collins Function

12GeV SoLID projection together with existing extractions and predictions for Tensor charges

- 4 Anselmino et al, Nucl. Phys. Proc. Su: 5 - Bacchetta, Courtoy, Radici, JHEP 130
- Lattice QCD:
- 6 Alexandrou et al, PoS(LATTICE 2014)
- 7 Gockeler et al, Phys. Lett. B (2005)

DSE:

- 8 Pitschmann et al. (2014)
- 9 Hecht, Roberts and Schmidt, Phys. Re Models:
- 10 Cloet, Bentz and Thomas, Phys. Lett.
- 11 Wakamatsu, Phys. Lett. B (2007)
- 12 Pasquini et al, Phys. Rev. D (2007)
- 13 Gamberg and Goldstein, Phys. Rev. I
- 14 He and Ji, Phys. Rev. D (1995)

SiDIS

- A unique combination of large acceptance and high luminosity : truly utilize 12-GeV upgrade to its full potential
- A comprehensive program with both proton and "neutron" targets in the same setup allows for flavor separation with better control of systematics
- Multi-dimensional binning of the data with high precision help reduce theoretical uncertainties in extracting TMDs

PVDIS

Parity Violation Deep Inelastic Scattering:

- → Measure the asymmetry between left- and right-handed electron scatterings which can access:
 - Flavor dependent quark distributions (u,d,s)
 - ✓ Charge symmetry violations
 - ✓ Higher twist effects
 - ✓ Nuclear medium effects
 - ✓ More ...

Standard Model:

$$g_{VA}^{eu} = C_{2u} = g_{VA}^{ed} = -C_{2d} = \frac{1}{2} - 2\sin^2\theta_W$$

PVDIS

- High luminosity and large acceptance
- Large scattering angles (for high x and y)
- Better than ~ 1% errors for small (x,Q²) bins for 0.25 < x < 0.75 and W² >4GeV² in moderate running times⁶
- Sub 1% precision over a broad kinematic range
- A test of Standard Model and NO BOXES access to hadronic structure contributions

PVDIS

- A precision test of the Standard Model with unique sensitivity to new PV physics in 10 – 20 TeV scale
- Search for Charge Symmetry Violation (CSV) at partonic level - important for PDF and NuTeV anomaly

- Test of QCD higher twist corrections (quark quark correlations)
- Measurement of d/u quark ratio for proton with no nuclear corrections
- Nuclear medium effects on quark distributions in heavy nuclei

PVDIS features:

- Large PV asymmetries (at large Q² values)
- Manageable backgrounds
- Ability to reach higher precision beam polarimetry with high beam energies of DIS

J/ψ

- Electro-production : $e + p^+ \rightarrow e' + p'^+ + J/\psi(e^-e^+)$
 - Detect e⁻e⁺ pair and scattered e⁻
- Photo-production : $\gamma + p^+ \rightarrow p'^+ + J/\psi(e^-e^+)$
 - Detect e⁻e⁺ pair and recoiled p⁺
- J/ψ threshold at 8.2 GeV and cross section measurement upto 11 GeV with SoLID
- A measurement near the threshold could shed light on the conformal (trace) anomaly

Near Threshold Electroproduction of J/ψ

→ Probes strong gluonic interaction between two color neutral objects J/ ψ and nucleon near threshold:

J/ψ

 SoLID: unique combination of large acceptance and high luminosity allow for complete kinematic determination for electro- and photo-production of J/ψ with unprecedented precision in previously unexplored region near threshold

- Probe strong color force in nucleon
- Important for QCD conformal (trace) anomaly, origin of proton mass, and its budget
- Open a window for future studies of J/ψ-nucleon interaction, search for exotic J/ψ-nuclear bound state due to QCD van der Waals force
- and more

Development at this time

• SIDIS

Strong science case: workshops (Stony Brook, ECT, INT) More Detailed Comparison with CLAS12/SBS Further Study systematics Tracking improvement Kaon identification (TOF)

• PVDIS

Improve Background study/Baffle Further Q2/performance/systematics Tracking improvement to 90%

 J/y More detail on Bin Migration Further evaluation of Background

 Developing GPD program DVMP with Polarized 3He Others (TCS, DVCS with polarized targets)

Current Timetable

- Spring 2017: Update pCDR -> Draft MIE
- Summer 2017: Science Review
- February 2018: Budget briefing to have SoLID in 2017/2018: CD0
- FY2020: CD3, start full project

SUMMARY Full exploitation of JLab 12 GeV Upgrade

→ SOLID: A Large Acceptance Detector THAT Can Handle High Luminosity (10³⁷-10³⁹)

Rich, vibrant and important physics program to address some of the most fundamental questions in Nuclear and Particle Physics

•Unprecedented precision in three-dimensional imaging of nucleon in momentum space, No competition in the proposed program on TMD

 PVDIS probing new physics in 10-20 TeV region complementary to LHC search, improving sensitivity to leptophobic Z' in 100-200 GeV;

QCD bonus: sensitivity to charge symmetry violation and high-twist effects

• J/ ψ production: unprecedented precision in a completely unexplored kinematic region near the threshold, probing strong color field in the nucleon, and QCD conformal anomaly, no competition

SoLID will provide the community with a general-purpose solenoidal detector capable to operate at high luminosities while still maintain large acceptance. Much more physics is foreseen with such a device, such as di-hadron detection, SSA measurements, and tagged DIS experiments, and much more!

Other Projects of interest: Proton Knockout

 Earler work on (γ,3N) in light nuclei indicated the main mechanism for 3N knockout is Meson production from a nucleon plus reabsorption (meson,NN) (meson,NNN)

- Smaller contribution of direct 3N knockout (photon coupling to 3N current) and 2N + final state interaction (e.g D.P. W et. al. Phys.Lett. B553 (2003) 25-30)
- At higher energies of CLAS data initial 2-meson and 3-meson production may contribute leading to possibilities for high multiplicity emission

CLAS analysis:

low missing mass fragments

Reconstruct mass of recoiling system using detected electron and proton(s) 4-vectors

Low missing mass fragment particularly interesting

First crude analysis – fit near threshold⁴⁰⁰ using gaussian having width of CLAS resolution

Simple guess for background shape

Backup Slides

• GEM: by UVa and Chinese collaborators

Goals: →5 planes (PVDIS) and 6 planes (SIDIS/JPsi), area~37 m² (165K outputs), →work in high rate and high radiation environment. →tracking eff.>90%, radius resolution ~ 0.1 mm,

<u>Status:</u>

- <u>UVa</u>: First full size prototype assembled, and beam test at Fermi Lab Oct 2013
- <u>China</u>: CIAE/USTC/Tsinghua/LZU)
- ✓ 30×30 cm prototype constructed and readout tested, and now moving to 100cm×50cm construction
- Gem foil production facility under development at CIAE
- ✓ Continue on read-out electronics desgin and test

100cmx50cm GEM foil

Multi-gap Resistive Plate Chamber: by Tsinghua, Duke and Rutgers

<u>Status:</u>

- → Prototype Developed at Tsinghua
- → Beam test at Hall-A in 2012
- \rightarrow New facility for mass production
- \rightarrow Read-out electronics design

<u>Goals:</u>

- \rightarrow For SIDIS only, between FASPD and FAEC
- → 50 super-modules, each contains 3 modules, 1650 strips and 3300 output channels.
- \rightarrow Timing resolution < 100ps
- \rightarrow Works at high rate up to 10 KHz/cm2
- \rightarrow Photon suppression > 10:1
- $\rightarrow \pi/k$ separation up to 2.5GeV/c

Tsinghua-FPGA TDC • 28

Electromagnetic Calorimeters (EC): by UVa, W&M, ANL ...

<u>Goals:</u>

- \rightarrow Shashlyk sampling calorimeters
- \rightarrow 1800 modules (2 R.L.) for PreShower, 1800 modules (18 R.L) for Shower
- \rightarrow Modules re-arranged for PDVIS<->SIDIS
- → electron eff.>90%, E-Resolution~10%/ \int E, π suppression > 50:1
- → Rad. Hard (<20% descreasing after 400K Rad)

		θ (deg)	z (cm)	R(cm)	P (GeV/c)	Max π/e	Area (m²)
	PVDIS FAEC	22 - 35	(320,380)	(110,265)	2.3 - 6	~200	~ 18.3
	SIDIS FAEC	7.5 - 14.85	(417,475)	(98,230)	1 - 7	~200	~ 13.6
.ore	SIDIS, LAEG	aj 16 .3 - 24	(-65,-5)	(83,140)	3-6	~20	~ 4.0
PPF	/NuSTEC 18to20	/04/2017					

SoLID (PVDIS)

Scintillating Pedal Detectors (SPD): by UVa and Duke ...

Triggers&DAQ

Triggers:

- \rightarrow Estimation based on sophesticated Geant simulation and well-tone physics models
- → PVDIS: LGC+EC provide electron triggers, 27 KHz/sector, 30 sectors
- → SIDIS: Coincident trigger between electrons and hardrons within a 30 ns window: LASPD+LAEC provide electron triggers, 25 KHz LGC+FASPD+MRPC+FAEC provide electron trigger, 129 KHz
 66 KHz + 6 KHz (eDIS)

Read-Out and Data Aquisition System:

- → Use fast electronics to handle the high rates (FADC, APV25, VETROC, etc.)
- → Read out EC clusters to reduce background
- → Current design can take the trigger rates 60 KHz per sector for PVDIS, and 100 KHz overall for SIDIS
- \rightarrow Use Level-3 to further reduce the events size
- → Learn newade, selopments from others (e.g. Hall-D) IPPP/NuSTEC 18to20/04/2017

Electromagnetic Calorimeters (EC): continue ...

<u>Status:</u>

- \rightarrow Sophesticated Geant Simulation
- \rightarrow Active Pre-R&D at UVa and Jlab
- \rightarrow Sample&PMT tests and Pre-Amp design

Fiber connectors

preserve DIS electron of x>0.35

Lorenzo Zana, SoLID @Jlab IPPP/MWSJEGI& & 02020/4/30607 momentum

Simulation&Software

♦ GEMC:

- SoLID full setup in GEMC (Geant4) with realistic materials
- EM background produced from 11GeV e- on targets with the physics models in Geant4
- Hadron background, generated from event generators (Wiser fit) on both target and target windows, then passed into GEMC

♦ GEM Tracking Reconstruction:

- Can reconstruct charged particles traveling in the strong magnetic filed
- Need fast processing time for high rates with backgrounds
- Two approaches: Tree Search (Ole), Progressive Tracking (Weizhi Xiong, Duke)

• 33

Power of SoLID-PVDIS

Baffle

PVDIS Baffle:

hits before FAEC (black(-),red(0),blue(+))

<u>Goals:</u>

- \rightarrow For PVDIS only
- \rightarrow 11 layers of 9cm thick lead and one layer of 5cm lead

 \rightarrow Right after the target to block photons, pions and secondary particles.

 \rightarrow Follow charge particle bending in the field, preserve the same azimuthal slice and block line of sight.

Light Gas Cherenkov Counter (LGC): by Temple University

<u>Goals:</u>

 →2 m CO2 (SIDIS/Jpsi), 1 atm
 →1 m C4F8O (65%)+N2 (35%) (PVDIS), 1 atm
 →30 sectors, 60 mirrors, 270 PMTs, Area~20m²
 →N.P.E>10, eff.>90%, π suppresion > 500:1

→Work at 200G field (100G after <u>shielding</u>)

<u>Status:</u>

- \rightarrow Support Structure and Mounting Design
- \rightarrow u-metal Shielding design
- \rightarrow Pre-R&D ongoing at Temple

Heavy Gas Cherenkov Counter (HGC): by Duke University

Goals:

- \rightarrow for SIDIS only
- \rightarrow 1 m C4F8O at 1.5 atm
- \rightarrow 30 mirrors, 480 PMTs, area~20 m²
- \rightarrow N.P.E>10, eff.>90%, Kaon suppression > 10:1,
- \rightarrow Work at 200G field (100G after <u>shielding</u>)

