Physics of v-A Interactions in GiBUU

Ulrich Mosel

Institut für Theoretische Physik

Oscillation Signals as F(E_v)

From: Diwan et al, Ann. Rev. Nucl. Part. Sci 66 (2016)

DUNE, 1300 km

HyperK (T2K) 295 km

Energies have to be known within 100 MeV (DUNE) or 50 MeV (T2K) Ratios of event rates to about 10%

Energy Reconstruction

From de Romeri et al, JHEP 1609 (2016) 030

Which Reaction Channels are important?

Neutrino-Nucleon Cross Sections

Experimental error-bars directly enter into nuclear cross sections and limit accuracy of energy reconstruction

BUT: this is only part of the problem, The other part is FSI, since experiments use nuclear targets

vA Reaction

General structure: approximately factorizes

full event (four-vectors of all particles in final state) \cong initial interaction x final state interaction

Determines inclusive X-section

Determines the final state particles

Neutrino Cross Sections: Nucleus

- All targets in long-baseline experiments are nuclei: C, O, Ar, Fe
- Cross sections on the nucleus:
 - QE + final state interactions (fsi)
 - Resonance-Pion Production + fsi
 - Deep Inelastic Scattering \rightarrow Pions + fsi
- Additional cross section on the nucleus:
 - Many-body effects, e.g., 2p-2h excitations
 - Coherent neutrino scattering and coh. pion production

Motivation for GiBUU

Need the full event for energy reconstruction Need to ,compute backwards' from final state to initial incoming neutrino energy Need initial neutrino-nucleon interactions and hadron-hadron final state interactions \blacksquare Need to do this in the energy range 0 – 30 GeV

GiBUU was constructed with the aim to encode the "best" possible theory

"BEST" requires

 All neutrino energies, -> relativistic from outset, includes resonances and DIS

- All targets
- Not just inclusive X-sections, but full events
- Reasonable bound nuclear ground states

Institut für Theoretische Physik, JLU Giessen

Gibuu

The Giessen Boltzmann-Uehling-Uhlenbeck Project

Initial interactions:

- Mean field potential with local Fermigas momentum distribution, nucleons are bound (not so in generators!)
- Initial interactions calculated by summing over interactions with all bound, Fermi-moving nucleons
- 2p2h from electron phenomenology

Final state interaction:

- propagates outgoing particles through the nucleus using quantum-kinetic transport theory, fully relativistic (off-shell transport possible).
 Initial and final interactions come from the same Hamiltonian.
 CONSISTENCY of inclusive and semi-inclusive X-sections
- Calculations give final state phase space distribution of all particles, four-vectors of all particles
 → generator

Pions

Pion production amplitude = resonance contrib + background (Born-terms) Resonance contrib V determined from e-scattering (MAID) A from PCAC ansatz Background: • Up to about Δ obtained from effective field theory • Beyond Δ unknown 2 pi BG totally unknown

GiBUU: new in 2016

Stable groundstate implemented -> improved hole spectral functions

 2p2h structure function for all kinematics, fitted to e-scattering, is used for neutrinos as well

2p2h excitations: from electrons to neutrinos 2p2h: purely transverse, response from e-scattering

$$\frac{d\sigma}{d\Omega dE'} = \frac{G^2}{2\pi^2} E'^2 \left[\frac{Q^2}{\vec{q}\,^2} \left(G_M^2 \frac{\omega^2}{\vec{q}\,^2} + G_A^2 \right) R_{\sigma\tau}(T) \cos^2 \frac{\theta}{2} \right. \\ \left. + 2 \left(G_M^2 \frac{\omega^2}{\vec{q}\,^2} + G_A^2 \right) R_{\sigma\tau}(T) \sin^2 \frac{\theta}{2} \right. \\ \left. \pm 2 \frac{E + E'}{M} G_A G_M R_{\sigma\tau}(T) \sin^2 \frac{\theta}{2} \right]$$

from: Martini et al. $R_{\sigma\tau} \sim W_1$ from electron scattering

R from data analysis of Bosted and Christy for 0 < W < 3.2 GeV and $0.2 < Q^2 < 5$ GeV²

Quantum-kinetic Transport Theory for FS $\mathcal{D}F(x,p) - \operatorname{tr}\left\{\Gamma f, \operatorname{Re}S^{\operatorname{ret}}(x,p)\right\}_{\operatorname{PB}} = C(x,p) \ .$ $\mathcal{D}F(x,p) = \{p_0 - H, F\}_{\rm PB} = \frac{\partial(p_0 - H)}{\partial x} \frac{\partial F}{\partial p} - \frac{\partial(p_0 - H)}{\partial p} \frac{\partial F}{\partial x}$ H contains mean-field potentials Describes time-evolution of F(x,p) $F(x,p) = 2\pi g f(x,p) \mathcal{P}(x,p)$

Phase space distribution

Kadanoff-Baym equations with BM offshell term

Institut für Theoretische Physik

Test with Electron Data: QE + Res

a necessary check for any generator development

Durham 04/2017

0.24 GeV, 36 deg, $Q^2 = 0.02 \text{ GeV}^2$

 $0.56 \text{ GeV}, 60 \text{ deg}, Q^2 = 0.24 \text{ GeV}^2$

Institut für Theoretische Physik USTUS-LIEBIG

Test with Electron Data: : QE + Res

500 MeV, 60 deg ~ 450 MeV, 0.19 GeV² 9 (i) 6 3 200300 100

Ankowski. Benhar, Sakuta

Institut für Theoretische Physik

GiBUU 2016

Test with Electron Data : QE + Res

Gibuu

M.V. Ivanov et al, J.Phys. G43 (2016) 045101

Institut für Theoretische Physik

Test with Electron Data: DIS

E = 5.766 GeVTheta = 50 Deg.

MiniBooNE Neutrinos

Durham 04/2017

Martini: no data adjust

MiniBooNE Anti-Neutrinos

Nieves

Institut für Theoretische Physik

Comparison with T2K incl. Data

Agreement for different neutrino flavors

T2K 0pion = QE + 2p2h + stuck pions

Durham 04/2017

Data: T2K ND280

Phys.Rev. D93 (2016) no.11, 112012

T2K ND280 Pions on Water

Data: T2K ND Phys.Rev. D95 (2017) no.1, 012010

MINERvA Pions

CC charged pions

W < 1.4 GeV

W < 1.8 GeV, multiple pions

MINERvA Pions

W < 1.8 GeV

Durham 04/2017

Institut für Theoretische Physik JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

MINERvA Pions: Theoretical Uncertainty

Sensitivity to collional broadening of Δ

Sensitivity of T2K to Energy Reconstruction

Fig. 2. $\mathcal{P}_{\mu e}$ in matter versus neutrino energy for the T2K experiment. The blue curves depict the normal hierarchy, red the inverse hierarchy. Solid curves depict positive θ_{13} , dashed curves negative θ_{13}

D.J. Ernst et al., arXiv:1303.4790 [nucl-th]

Oscillation signal in T2K δ_{CP} sensitivity of appearance exps

Uncertainties due to energy reconstruction as large as δ_{CP} dependence

Durham 04/2017

Institut für Theoretische Physik

UNIVERSIT

Generator Dependence of Oscillation Parameters

From: P. Coloma et al, Phys.Rev. D89 (2014) 073015

Nature: GiBUU Generator: GENIE

T2K Flux

Summary

- GiBUU gives both inclusive X-sections and full events. GiBUU describes inclusive electron and neutrino data, without any tuning, both QE and pion production. Agreement is comparable with that of any other theory GiBUU works in all energy regimes, both BNB and MINERvA/LBNF energies GiBUU works for all nuclei
 - GiBUU is *publicly available*: gibuu.hepforge.org

GiBUU: References

Essential References:

- I. Buss et al, Phys. Rept. 512 (2012) I contains both the theory and the practical implementation of transport theory
- 2. Gallmeister et al., Phys.Rev. C94 (2016), 035502 contains the latest changes in GiBUU2016
- 3. Mosel, Ann. Rev. Nucl. Part. Sci. 66 (2016) 171 short review, contains some discussion of generators
- 4. Mosel et al, arXiv:1702.04932 pion production comparison of MiniBooNE, T2K and MINERvA

