Prospects for flavour physics with Belle II

Boštjan Golob University of Ljubljana/Jožef Stefan Institute & Belle/Belle II Collaboration

University of Ljubljana

"Jožef Stefan" Institute Introduction

Missing energy

(Semi)Inclusive decays

Neutrals

Summary

HIGGS MAXWELL WORKSHOP 2017

Higgs-Maxwell MWorkshop, February 2017

B. Golob, Belle II 1/17

Intro	ducti	on	

Introduction

TRIPLE APPROACH (... TO CONTEPMPORARY HIGH ENERGY PHYSICS)

Intensity Frontier

Cosmic Frontier

Why Flavor Physics?

Why test the flavor sector of SM?

- To confirm the SM (Cabibbo-Kobayashi-Maskawa) picture of quark mixing
 2008
- SM is phenomenological description of energies achieved so far
- Several reasons for NP existence (e.g.
 - to preserve unitarity $M_{Higgs} \sim O(100 \text{ GeV})$;

only possible through precise cancellation; hierarchy problem solved with Supersymmetry, Extra dimensions, etc.;

CP violation is one of necessary conditions for matterdominated Universe;A.D. Sakharov, Pisma Zh. Exp. Teor. Fiz. 5, 3

CPV observed so far in subatomic world not sufficient for observed matter dominance in the Universe)

- Flavor mixing in extensions of SM (CKM matrix or equivalent) can identify nature of NP

2013

Introduction

Accelerator "SuperKEKB"

SuperKEKB:

e⁻ (HER): 7.0 GeV e⁺ (LER): 4.0 GeV

 $E_{CMS}=M(Y(4S))c^{2}$

 $dN_{f}/dt = \sigma(e^{+}e^{-} \rightarrow f) \mathcal{L}$ $\mathcal{L} = 8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

$p(e^{-}) = 7 \text{ GeV } p(e^{+}) = 4 \text{ GeV}$

```
on resonance production

e^+e^- \rightarrow Y(4S) \rightarrow B^0\overline{B}{}^0, B^+B^-

\sigma(B\overline{B}) \approx 1.1 \text{ nb}

(~1.1x10<sup>9</sup> BB pairs)
```

continuum production $\sigma(c \bar{c}) \approx 1.3 \text{ nb}$ (~1.4x10⁹ X_cY_c pairs)

$$-\stackrel{\gamma^{*}}{\leftarrow} \stackrel{c, u, d, s, \tau^{-}, \mu^{-}, e^{-}}{\overline{c}, \overline{u}, \overline{d}, \overline{s}, \tau^{+}, \mu^{+}, e^{+}}$$

Introduction

E^{e-}_{beam} from Y(4S) mass

B. Golob, K. Trabelsi, P. Urquijo, Belle2-note-ph-2015-002

Belle 2: improved K_S reconstr.; improved hadr. B tagging;

LHCb: σ ∝√s;

run 2 50% less eff. for hadronic triggers than run 1;

run 3 increase eff. for hadr. triggers by 2x w.r.t. run 1;

LHCb EPJC 73, 2373

Higgs-Maxwell MWorkshop, February 2017

RELATIVE YIELD INCREASE

B. Golob, Belle II 6/17

B. Golob, Belle II 7/17

Introduction E _{miss}	Inclusive Neutrals Summary	Subjects
Methods and p important insig	ROCESSES WHERE BE GHT INTO NP COMPLEM	LLE 2 CAN PROVIDE MENTARY TO OTHER EXPERIMENTS:
$E_{MISS}:$ $\mathcal{B}(B \to \tau \nu), \ \mathcal{B}(B \to \sigma \nu), \ \mathcal{B}(B \to $	$\begin{array}{l} X_{c}\tau\nu), \ \mathcal{B}(B \rightarrow h\nu\nu), \dots \\ \vdots \\ \rightarrow s\gamma), \ \mathcal{B}(B \rightarrow sII), \ \dots \\ B \rightarrow \eta'K_{S}), \ S(B \rightarrow K_{S}K_{S}) \end{array}$	$(\mathcal{K}_{S}), \ \mathcal{B}(\tau \rightarrow \mu \gamma), \ \mathcal{B}(B_{s} \rightarrow \gamma \gamma), \$
DETAILED DESCF A.G. Akeroyd et al., arXiv: 10	PHYSICS PE 02.5012 Physics at Supe	ROGRAM AT BELLE 2 IN: er <i>B</i> Factory
Super <i>B</i> B. O'LE	ary et al., arXiv: 1008.1541	B.G.,, K, TRABELSI, P. URQUIJO, BE LLE2-NOTE-PH-20

Progress Reports

Physics

The Physics of the B Factories

ED. A.J. BEVAN, B. GOLOB, TH. MANNEL, S. PRELL, AND B.D. YABSLEY, EUR. PHYS. J. C74 (2014) 3026

15-002

IMPACT OF BELLE II ON FLAVOR PHYSICS

P. URQUIJO, BE LLE2-NOTE- PH-2015-002

BELLE I I - LHCB MEASUREMENT EXTRAPOLATION COMPARISONS Em

Inclusive Neutrals Summary

Missing energy

$$B \rightarrow \tau v, h v v, X_C \tau v, \dots$$

possible to reconstruct events with v's;

fully (partially) reconstruct B_{tag} ; reconstruct h[±] from B_{sig} ; no additional energy in EM calorim.; signal at E_{ECL} ~0;

Partial reconstruction (semileptonic tagging):

$$\cos \theta_{B-D^*\ell} \equiv \frac{2E_{\text{beam}}E_{D^*\ell} - m_B^2 - M_{D^*\ell}^2}{2|\vec{p}_B| \cdot |\vec{p}_{D^*\ell}|}$$

 ϵ_{tag} ~1%

B. Golob, Belle II 9/17

Е...

Inclusive Neutrals Summary

 $B \rightarrow \tau v$ Does nature have multiple Higgs bosons?*

 $\mathcal{B}(B^+ \to \tau^+ \nu) = \mathcal{B}^{SM}(B^+ \to \tau^+ \nu)$

Higgs-Maxwell MWorkshop, February 2017

B. Golob, Belle II 10/17

B. Golob, Belle II 12/17

B. Golob, Belle II 13/17

B. Golob, Belle II 14/17

Inclusive

M. Misiak et al., PRL98, 022002 (2007) M_H>200\GeV σ(Br) Belle, 0.6 ab-0.35 $\sigma_{\mathcal{B}}$ 250 $\times 10^4$ 0.3 300 HFAG,2006 0.25 400 HFAG ICHEP'10 0.2 550 0.15 900 $\mathcal{B} \times 10^4$ 3.8 2.8 3.6 3. 2 3.4 precision @ 50 ab⁻¹ & possible range of central values η' \bar{B}^0 \mathbf{Ks} $\Delta S = SIN2\phi_1^{\text{eff}} - SIN2\phi_1$

 $B \rightarrow s(+d) \gamma$

Does nature have multiple Higgs bosons?

CPV IN $B \rightarrow sq\overline{q}$

ARE THERE NEW CP-VIOLATING PHASES IN THE QUARK SECTOR?

SOME UNCERTAINTIES CANCEL IN ΔS

(VTX RECONSTR., FLAVOR TAG, LIKELIHOOD FIT) ; BETTER K_S EFF. WITH VTX HITS - LARGER VTX RADIUS, 30%);

VTX RECONSTR. IMPROVED WITH BETTER TRACKING;

41 new phases in MSSM

Higgs-Maxwell MWorkshop, February 2017

B. Golob, Belle II 15/17

Introduction			
F			

Inclusive

Neutrals Summary

Neutrals

CPV IN $B \rightarrow sq\overline{q}$

Higgs-Maxwell MWorkshop, February 2017

THAT POINT OF VIEW IS THE OPTIMISM THAT THE PHYSICS OF THE HIGGS FIELD AND ELECTROWEAK SYMMETRY BREAKING HAS A MECHANISM, ... ONLY PEOPLE WHO BELIEVE IN IT CAN MAKE THE DISCOVERY THAT IT IS TRUE.

THERE IS AN ALTERNATIVE POINT OF VIEW.

THOSE WHO CHOOSE TO BELIEVE THAT THE STANDARD MODEL IS LITERALLY TRUE SHOULD UNDERSTAND THAT THIS IS WHAT THEY ARE BUYING.

UNANSWERABLE.

Introduction

E

THIS WOULD LEAVE US IN A TERRIBLE SITUATION. ALL OF THE QUESTIONS THAT WE HAVE TODAY ABOUT THE PROPERTIES OF PARTICLES WITHIN THE STANDARD MODEL WOULD NOT ONLY BE LEFT UNANSWERED BUT WOULD BE

THE END OF EXPERIMENTAL PARTICLE PHYSICS.

M.E. Peskin, arXiv:1110.3805 IF THE HIGGS BOSON MASS IS ABOVE THE LEP LOWER BOUND OF 114 GEV AND BELOW THE UPPER LIMIT FROM THE LHC ... THE STANDARD MODEL IS SELF-CONSISTENT UP TO VERY HIGH ENERGIES, ALL THE WAY TO THE PLANCK **SCALE.** THUS, A POSSIBLE OUTCOME OF THE LHC EXPERIMENTS COULD BE

MICHAEL E. PESKIN, FINAL SPEACH OF LEPTON PHOTON 2011

Why Flavor Physics?

Inclusive Neutrals Summary

Introduction

Inclusive Neutrals Summary

Luminosity Planning

Super KEKB luminosity planning

 $http://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC\%20schedule\%20beyond\%20LS1\%20MTP\%202015_Freddy_June2015.pdf$

Belle 2 planning

BEAST PHASE I: Simple background commissioning detector

(diodes, TPCs, crystals). No final focus (i.e. no luminosity, single beam background studies possible).

<image>

BEAST PHASE II: More elaborate inner background commissioning detector & full Belle II outer detector. Superconducting final focus, no vertex detectors.

Oct 2017 – Jan 2018

Feb – Jun 2016

Physics Running

E....

EARLY RUNNING

- NEED TIME FOR CALIBRATION OF DETECTORS AT Y(4S);
- MEASUREMENTS NOT REQUIRING SOPHISTICATED PID AND/OR VERTEX DETERMINATION;
- MAXIMIZE IMPACT ON EXISTING DATA SAMPLES (E.G. Y(3S));

DARK MATTER

 $e^+e^- \rightarrow \gamma A' \rightarrow \gamma \chi \chi$ (M_{\chi} < M_A./2)

SINGLE γ TRIGGER REQUIRED; SIMPLIFIED: SINGLE γ , $E_{\gamma} > E_{CUT}$;

Higgs-Maxwell MWorkshop, February 2017

B. Golob, Belle II 21/17

	Introduction E _{miss}	Inclusive Neutrals Summary	$B woheadrightarrow d\gamma$
	$B \rightarrow d \gamma$		
	WITHIN SM: $Br(B \rightarrow d\gamma) / Br(B)$ (RATIO CAN BE USED TO DETERN $Br(B \rightarrow s\gamma) = 3.4 \cdot 10^{-4}$ $Br(B \rightarrow d\gamma)$ should be measured	$B \rightarrow s\gamma$) =(3.8 ±0.5 MINE V _{td} /V _{ts})	T. Hurth et al., Nucl.Phys. B704, 56 (2005) $\sim 2 \cdot 10^{-6}$
	SUM OF EXCLUSIVE MODES: BABAR, PRD82, 051101 (2010), 0.4AB-1	$\sigma(Br(d\gamma)) = (\pm 3)$ $\sigma(Br(d\gamma)) = (\pm 2)$	± 1)·10 ⁻⁷ LOW X _D MASS REGION 0±22)·10 ⁻⁷ HIGH X _D MASS REGION
	LARGEST SYST. UNCERTAINTY: $B \rightarrow s \gamma BKG.;$ MISSING (>= 5 BODY) MODES:	SIGN	FICANT IMPROVEMENT NECESSARY $BELLE 2 EULL SIMULATION$
$\delta BF(X_{A}, \gamma) Sum Excl.$	Belle II Projection Belle II Projection Exp. Systematics limited Total Statistics Systematics 1 10 Integrated Luminosity [ab	sta 400 200 0 -0.4	Belle 2 Hould Simolarion. $ \begin{array}{c} \hline & & & & \\ \hline & & & & & \\$

$B \rightarrow s\gamma DCPV$

 $B \rightarrow s\gamma$ DIRECT CPV

SEMI-INCLUSIVE, SUM OF MANY EXCLUSIVE STATES: ALL FLAVOR SPECIFIC FINAL STATES;

<D>: AVERAGE DILUTION DUE TO FLAVOUR MISTAG, ~1

- ΔD : DIFFERENCE BETWEEN FLAVOUR MISTAG FOR B AND \overline{B} , << 1
- A_{DET}: DETECTOR INDUCED ASYMMETRY

 $A_{CP} = (-0.8 \pm 2.9)\% \text{ HFAG, 2014}$ SM: $A_{CP} \sim (0.44 \pm 0.24_{0.14})\%$

T. HURTH ET AL., NUCL.PHYS. B704, 56 (2005)

 A_{DET} : CAREFUL STUDY OF K/ π asymmetries in (P, θ_{lab}) USING D decays or inclusive TRACKS FROM FRAGMENTATION;

LOTS OF WORK ON SYSTEM., \rightarrow FEW 10⁻³ EXP. SENSITIVITY

A. Lenz, Oct 26 morningL. LiGioi, Oct 26 afternoonT. Hurth, Nov 14 morning

Higgs-Maxwell MWorkshop, February 2017

B. Golob, Belle II 23/17

 $B \rightarrow s\gamma TCPV$

 $B \rightarrow K^* (\rightarrow K_S \pi^0) \gamma$ t-dependent CPV

SM:
$$S_{CP}^{K^*\gamma} \sim -(2m_s/m_b)sin2\phi_1 \sim -0.04$$

Left-Right Symmetric Models: $S_{CP}^{K^*\gamma} \sim 0.67 \cos 2\phi_1 \sim 0.5$

D. Atwood et al., PRL79, 185 (1997) B. Grinstein et al., PRD71, 011504 (2005)

$$S_{CP}^{K_{S\pi}0\gamma} = -0.15 \pm 0.20$$

 $A_{CP}^{K_{S\pi}0\gamma} = -0.07 \pm 0.12$

HFAG, Summer'12

$$σ(S_{CP}^{Ksπ0γ}) = 0.09 @ 5 ab^{-1}
0.03 @ 50 ab^{-1}
(~SM prediction)$$

t-dependent decays rate of $B \rightarrow f_{CP}$; S and A: CP violating parameters $P(B^0 \to f; \Delta t) = \frac{e^{-|\Delta t|/\tau}}{\Lambda_{\tau}} [1 + S_{CP}^f \sin(\Delta m \Delta t) +$ + $A_{CP}^{f} \cos(\Delta m \Delta t)$] $K_{S} \pi^{0} \gamma S_{CP} vs C_{CP}$ HFAG Summer 2012 С_{СР} 0.8 г BaBar Belle Average 0.4 5 ab-1 0 -0.4 50 ab-1

Higgs-Maxwell MWorkshop, February 2017

B. Golob, Belle II 24/17

0

Contours give $-2\Delta(\ln L) = \Delta \chi^2 = 1$, corresponding to 60.7% CL for 2 dof

0.4

0.8 S_{CP}

-0.4

-0.8 -0.8

Inclusive Neutrals

DCPV puzzle

Higgs-Maxwell MWorkshop, February 2017

B. Golob, Belle II 26/17

B. Golob, Belle II 27/17

Introduction		Inclusive Neutrals	Summary (Belle perspective)					
		Summary						=
	Observables	Belle or LHCb*	В	elle II		LHC	b	disclaimer [.]
		(2014)	5 ab^-	¹ 50 ab ⁻	-1 8 fb-	¹ (2018)) 50 fb ⁻	nersonal statements
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (0.9^{\rm o})$	0.4°	0.3°	0.6°	~	0.3°	
	α [°]	85 ± 4 (Belle+BaBar)	2	1				on importance of ind.
	$\gamma [\circ] (B \rightarrow D^{(*)} K^{(*)})$	68 ± 14	6	1.5	4	I	1	
	$2\beta_{\rm s}(B_s \to J/\psi \phi)$ [rad]	$0.07\pm 0.09\pm 0.01^*$			0.025	!	0.009	
Gluonic penguins	$S(B \rightarrow \phi K^0)$	0.90+0.09	0.053	0.018	0.2	?	0.04	SM? xprobababar of so
	$S(B \to \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.028	0.011				interesting because
	$S(B \rightarrow K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	0.100	0.033				SM value can be
	$\beta_s^{\text{eff}}(B_s \to \phi \phi) \text{ [rad]}$	$-0.17\pm0.15\pm0.03^*$			0.12	I	0.03	reaching Sm_prediction (≤0.02)
	$\beta^{\rm eff}_s(B_s \to K^{*0} \bar{K}^{*0})$ [rad]	-			0.13		0.03	reached/tested
Direct CP in hadronic Decays	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$	0.07	0.04		?		$\Box_{\sigma(l_{k\pi})}$ medium interasting,
UT sides	V _{cb} incl.	$41.6 \cdot 10^{-3} (1 \pm 2.4\%)$	1.2%			-		may depend on
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{ex.} \pm 2.7\%_{th.})$	1.8%	1.4%		~		exceedotherremeasurements
	$ V_{ub} $ incl.	$4.47\cdot 10^{-3} (1\pm 6.0\%_{\rm ex.}\pm 2.5\%_{\rm th.})$	3.4%	3.0%		I		to reach short sint to improve
	$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3} (1 \pm 10.8\%)$	4.7%	2.4%		I		Probably high precise determination
Leptonic and Semi-tauonic	$\mathcal{B}(B \to \tau \nu)$ [10 ⁻⁶]	$96(1 \pm 26\%)$	10%	5%		~		Depending on V _{ub} , current SM ±13%
	$\mathcal{B}(B \to \mu \nu) [10^{-6}]$	< 1.7	20%	7%				
	$R(B \rightarrow D \tau \nu)$ [Had. tag]	$0.440(1 \pm 16.5\%)^{\dagger}$	5.6%	3.4%		~		current SM precision (~5%) will probably be
	$R(B \rightarrow D^* \tau \nu)^{\dagger}$ [Had. tag]	$0.332(1 \pm 9.0\%)^{\dagger}$	3.2%	2.1%		I		improved To reach SM precision (~1%-2%)
Radiative	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$	7%	6%		-		
	$A_{CP}(B \rightarrow X_{s,d}\gamma)$ [10 ⁻²]	$2.2\pm4.0\pm0.8$	1	0.5				
	$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035				
	$2\beta_s^{\text{eff}}(B_s \to \phi \gamma)$				0.13	I	0.03	
	$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07	0.0000.000			
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	0.3	-				
Electroweak penguins	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40	< 15	30%				_
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55	< 21	30%				
	$C_7/C_9 \ (B \to X_s \ell \ell)$	~20%	10%	5%				
	$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	-	< 2	-				
	$\mathcal{B}(B_s \to \mu \mu) \ [10^{-9}]$	$2.9^{+1.1}_{-1.0}$			0.5	I	0.2	to reach SM precision
		-						
B. GOLOB, K. TRABEL	si, P. Urquijo, Belle2-n	оте-рн-2015-002 20	20	23	18		27	?

B. Golob, Belle II 29/17

Inner Detector

INNER DETECTOR STATUS AS OF FEBRUARY 2017

(VXD = SVD + PXD)

SVD: ~70% OF LADDERS PRODUCED PXD: SENSOR PRODUCTION ALMOST COMPLETED, ASICS ONGOING

INSTALLATION OF VXD: JULY 2018

VXD practice installation

BUILD UP STEP BY STEP FULL PXD SYSTEM AND THEN TEST WITH BEAM BEFORE TRANSPORT TO KEK.

Higgs-Maxwell MWorkshop, February 2017

B. Golob, Belle II 30/17